LBP特征提取原理及代码实现
老规矩,先上背景,算是表示对LBP算法提出者的一种尊敬(其实,是为了装...kkk,大家都懂ha)。 一、LBP背景: LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像 局部纹理特征 的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由 T. Ojala, M.Pietikäinen, 和D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理特征。至今,仍在图像识别和人脸识别部分,有很好的效果。 二、LBP特征的原理: 从94年T. Ojala, M.Pietikäinen, 和D. Harwood提出至今,LBP经历过多次的改进,以下根据时间顺序介绍: FirstBleed: 原始的LBP算子定义为在3*3的窗口内,以窗口内的中心点的像素值为标准,对比窗口内其余8个元素的像数值大小,大于中心点的位置用1表示,小于为0。如此,3*3领域内的8个点恰可产生8为二进制数字(通常转化为十进制表示成LBP值)即为中心点的LBP特征值。 上图: SecondBleed: 原始的LBP提出后,研究人员不断对其改进和优化,以下是改进点。 (一):圆形LBP算子: 原始LBP算子固定为某个区域,在图像尺寸和频率纹理发生改变时,会出现很大的偏差