浪涌电压

NTC PTC 压敏热敏电阻

﹥>﹥吖頭↗ 提交于 2020-01-07 09:40:02
NTC PTC 压敏电阻 在电源电路中的作用 [来自dianyuan.com] 问题1: NTC电阻串联在交流电路中主要是起什么作用!它是怎样工作!请大侠指点!谢谢! 问题2: 压敏电阻并联在交流侧电路中主要是起什么作用!它是怎样工作!如果没有以上两个元器件!会造成什么影响!谢谢!! 以下是一些网友针对这个问题的讨论,删除了一些水贴,以及我认为是错误的观点。 -------------------------------------------- NTC电阻串联在交流电路中主要是起“电流保险”作用. 压敏电阻并联在交流侧电路中主要是起“限制电压超高”作用. 为了避免电子电路中在开机的瞬间产生的浪涌电流,在电源电路中串接一个功率型NTC热敏电阻器,能有效地抑制开机时的浪涌电流,并且在完成抑制浪涌电流作用以后,由于通过其电流的持续作用,功率型NTC热敏电阻器的电阻值将下降到非常小的程度,它消耗的功率可以忽略不计,不会对正常的工作电流造成影响,所以,在电源回路中使用功率型NTC热敏电阻器,是抑制开机时的浪涌,以保证电子设备免遭破坏的最为简便而有效的措施 。 压敏电阻的工作原理:比如一个“标称300V”的压敏电阻在220V的工作中,突然220V上升到310V!这时压敏电阻被击穿,通过很大的电流,熔断了保险丝后,就保护了后面的电路,然后压敏电阻又恢复了原来的状态. 我的故事讲完了. 老人家:

EMC防护设计-浪涌

百般思念 提交于 2019-12-06 06:50:31
0、写在前面的话 EMC的测试项目很多,本文主要介绍电源端口的浪涌防护设计的 原理 、 基本防护结构,防护器件的选型 ,相关PCB的设计在此处不做过多讲解。 浪涌和静电防护的“套路”大同小异,但各有侧重点。对于浪涌和静电的整改就好比治理水患的河道,需要做好“ 疏通 ”和“ 阻挡 ”,其中又以疏通为主,阻挡为辅。浪涌防护设计本质上并不难,只是因为在成本和体积的限制前提下才显得不那么好处理,所以说,设计中处处存在妥协,没有完美的设计,只有合适的设计。 另外,由于不同行业的产品所需的防护等级不同,如军品和消费品完全不在一个等级,所以具体项目需要具体分析。在EMC设计之前,请确认好产品所需的防护等级、是否有安规需求以及成本要求如何等。 1、EMC家族标准介绍 目前EMC标准主要分为IEC xxx标准(国际标准)、EN xxx标准(欧标)、GB/T xxx标准(国标)等,国际上为了产品标准的统一性,所以国标和欧标基本上是从IEC国际标准引申出来的,其内容也基本一致。 EMC按结构主要分为基础标准、通用标准、产品类标准和产品标准。EMC基础标准为EMC的各个具体测试项,其分为EMI和EMS,其中EMI主要有辐射骚扰和传导骚扰等;EMS主要有静电抗扰度、浪涌抗扰度以及电快速瞬变脉冲群等。 备注:关于EMC标准及其具体标准号的介绍,请参考我的另一篇博文 EMC相关标准 。 2

EMC诊断技巧与案例解析(三)

荒凉一梦 提交于 2019-12-06 06:03:33
1 静电(ESD)整改定位 针对静电,最重要的一点是 路径 。没有路径,静电无法泄放,即没有静电问题。所以分析静电时,主要分析路径,这是静电诊断分析的思路。 首先判定是否有路径,如果有,则确定静电电流是否流入敏感电路,如果是则进行切断,可采取高阻抗阻挡或低阻抗泄放的措施。如果没有流入,看下周围是否有敏电感。有敏感电路的话,则对敏感电路进行处理,如加滤波、屏蔽等措施,如果没有敏感电路,有可能是整个放电回路阻抗过高,比如地阻抗。如果无路径,则人为制造低阻抗路径进行泄放。 案例一、塑料外壳静电防护 塑料外壳防静电效果好,但绝缘距离是关键 4mm可满足8KV空气放电 静电防护有很多措施,比如元器件选择、电路设计、PCB设计、结构设计等等,从结构设计的角度考虑, 塑料外壳 是最好的静电防护措施,因为塑料外壳是绝缘材料,静电无法泄放。 关键点: 使用塑料外壳防护静电,绝缘距离如果不满足,同样会存在静电问题,特别是进行空气放电时容易与内部电路形成拉弧,从而导致静电问题。 如上图就是使用塑料外壳但内部器件与过孔离外壳过近导致绝缘距离不够,空气放电时与内部电路拉弧导致IC损坏。 案例二、敏感信号受干扰 关键信号需做滤波处理,如片选、复位、采样等 静电防护除了塑料外壳,还有一种是 金属外壳接地防护 。针对金属外壳防静电问题,重点是关注接地良好性(大面积接地、不能有氧化漆等)。