学习SVM,这篇文章就够了!(附详细代码)
支持向量机 (SVM),一个神秘而众知的名字,在其出来就受到了莫大的追捧,号称最优秀的分类算法之一,以其简单的理论构造了复杂的算法,又以其简单的用法实现了复杂的问题,不得不说确实完美。 本系列旨在以基础化的过程,实例化的形式一探SVM的究竟。曾经也只用过集成化的SVM软件包,效果确实好。因为众人皆说原理复杂就对其原理却没怎么研究,最近经过一段时间的研究感觉其原理还是可以理解,这里希望以一个从懵懂到略微熟知的角度记录一下学习的过程。其实网络上讲SVM算法的多不胜数,博客中也有许多大师级博主的文章,写的也很简单明了,可是在看过之后,总是感觉差点什么,当然对于那些基础好的可能一看就懂了,然而对于像我们这些基础薄弱的,一遍下 来也 只能马马虎虎,过一两天后又忘了公式怎么来的了。 比如说在研究SVM之前,你是否听说过拉格朗日乘子法?你是否知道什么是对偶问题?你是否了解它们是怎么解决问题的?这些不知道的话,更别说什么是KKT条件了。话说像拉格朗日乘子法,在大学里面学数学的话,不应该没学过,但是你学会了吗?你知道是干什么的吗?如果那个时候就会了,那你潜质相当高了。作为一个过来人,我将以简单实例化形式记录自己的学习过程,力图帮助新手级学习者少走弯路。 1、 关于拉格朗日乘子法和KKT条件 1)关于拉格朗日乘子法 首先来了解拉格朗日乘子法,为什么需要拉格朗日乘子法呢?记住,有需要拉格朗日乘子法的地方