LabelImg

pytorch版yolov3训练自己数据集

↘锁芯ラ 提交于 2020-08-09 20:39:04
目录 1. 环境搭建 2. 数据集构建 1. xml文件生成需要Labelimg软件 2. VOC2007 数据集格式 3. 创建*.names file, 4. 更新data/coco.data,其中保存的是很多配置信息 5. 更新cfg文件,修改类别相关信息 6. 数据集格式说明 3. 训练模型 4. 测试模型 5. 评估模型 6. 可视化 7. 高级进阶-网络结构更改 1. 环境搭建 将github库download下来。 git clone https://github.com/ultralytics/yolov3.git 建议在linux环境下使用anaconda进行搭建 conda create -n yolov3 python=3.7 安装需要的软件 pip install -r requirements.txt 环境要求: python >= 3.7 pytorch >= 1.1 numpy tqdm opencv-python 其中只需要注意pytorch的安装: 到 https://pytorch.org/ 中根据操作系统,python版本,cuda版本等选择命令即可。 关于深度学习环境搭建请参看: https://www.cnblogs.com/pprp/p/9463974.html anaconda常用用法: https://www.cnblogs.com

Windows版YOLOv4目标检测实战:训练自己的数据集

∥☆過路亽.° 提交于 2020-05-06 10:18:50
课程链接: https://edu.51cto.com/course/22982.html 课程演示环境:Windows10; cuda 10.2; cudnn7.6.5; Python3.7; VisualStudio2019; OpenCV3.4 需要学习ubuntu系统YOLOv4的同学请前往:《YOLOv4目标检测实战:训练自己的数据集》 https://edu.51cto.com/course/22982.html YOLOv4来了!速度和精度双提升! 与 YOLOv3 相比,新版本的 AP (精度)和 FPS (每秒帧率)分别提高了 10% 和 12%。 YOLO系列是基于深度学习的端到端实时目标检测方法。本课程将手把手地教大家使用labelImg标注和使用YOLOv4训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。 本课程的YOLOv4使用AlexyAB/darknet,在Windows系统上做项目演示。包括:安装软件环境、安装YOLOv4、标注自己的数据集、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计(mAP计算)和先验框聚类分析。还将介绍改善YOLOv4目标检测性能的技巧。 除本课程《Windows版YOLOv4目标检测实战:训练自己的数据集》外

书本:来吧,证明你爱我的时候到了!

不打扰是莪最后的温柔 提交于 2020-04-24 12:49:19
项目体验地址: at.iunitv.cn/ 效果预览: 花絮: 读书节马上就要到了,相信很多小伙伴嘴上说着学不动了,其实身体还是很诚实的。 毕竟读书还是有很多好处的:比如让你的脑门散发智慧的光芒,再或者让你有理由说因为读书太忙了所以没有女朋友等等。 所以在这个特殊的日子里,你这一年的图书我们承包了。不为别的,只为帮助在座的各位在2020年能够遇见更好的自己! 今天的主题仅仅是送图书,我们也想要借助这个特殊的机会,普及一下Tensorflow相关的知识,我们会用TensorFlow.js做一个图书识别的模型,并在Vue Application中运行,赋予网页识别图书的能力。 本文讲述了AI相关的概念知识和如何运用SSD Mobile Net V1模型进行迁移学习的方法,从而帮助大家完成一个可以在网页上运行的图书识别模型。 正文: 什么是迁移学习 迁移学习和域适应指的是在一种环境中学到的知识被用在另一个领域中来提高它的泛化性能。——《深度学习》,第 526 页 再简单一点理解,以今天图书识别模型训练为例,我们利用前人训练好的具备图片识别能力的AI模型,保留AI模型中对图片特征提取的能力的基础上再训练,使AI模型具备识别图书的能力。 迁移学习能够大大提高模型训练的速度,并达到相对不错的正确率。 而我们今天所要迁移学习的对象就是SSD Mobile Net V1模型

百度开源口罩检测项目,小编教你30分钟搞定模型训练

淺唱寂寞╮ 提交于 2020-03-26 21:08:28
3 月,跳不动了?>>> 史上最长春假结束,全国各地企业陆续复工。机场、火车站等地又将迎来人流高峰,我们对疫情防护仍然不能有所懈怠。如何实时检测人群口罩佩戴情况从而快速发现未按要求佩戴口罩的人,对于防疫工作来说,是个头大的问题。 目前AI人脸口罩检测方案已成为返工潮中众多社区、企业、商场解决该问题的首选方案,并得到了较好的应用。各大企业也积极为AI战“疫”做出贡献,百度开源了业界首个口罩人脸检测及分类模型,滴滴随后也免费开放了口罩佩戴识别技术。那么,它们是如何建立口罩检测模型的呢?其背后原理是什么?今天小编将为你揭开TensorFlow模型训练的秘密,让你看完本篇文章,就能学会自己训练模型。 知识点 TensorFlow™ 是一个采用数据流图(data flow graphs)对数值予以计算的开源软件库。数据流图根据“节点”(nodes)和“线”(edges)的有向图来描述数学计算。“节点” 一般表示施加的数学操作,但也可以代表数据输入(feed in)的起点/输出(push out)的终点,或者是读取/写入持久变量(persistent variable)的终点。“线”表示“节点”之间的输入/输出关系。这些数据“线”可以传递“size可动态调整”的多维数据数组,即“张量”(tensor)。一旦输入端的所有张量准备好,节点将被分配到各种计算设备完成异步并行运算。

【AI实战】手把手教你训练自己的目标检测模型(SSD篇)

谁说胖子不能爱 提交于 2019-11-29 14:54:27
目标检测是AI的一项重要应用,通过目标检测模型能在图像中把人、动物、汽车、飞机等目标物体检测出来,甚至还能将物体的轮廓描绘出来,就像下面这张图,是不是很酷炫呢,嘿嘿 在动手训练自己的目标检测模型之前,建议先了解一下目标检测模型的原理(见文章: 大话目标检测经典模型RCNN、Fast RCNN、Faster RCNN , 以及Mark R-CNN ),这样才会更加清楚模型的训练过程。 本文将在我们前面搭建好的AI实战基础环境上(见文章: AI基础环境搭建 ),基于SSD算法,介绍如何使用自己的数据训练目标检测模型。 SSD,全称Single Shot MultiBox Detector(单镜头多盒检测器) ,是Wei Liu在ECCV 2016上提出的一种目标检测算法,是目前流行的主要检测框架之一。 本案例要做的识别便是在图像中识别出熊猫,可爱吧,呵呵 下面按照以下过程介绍如何使用自己的数据训练目标检测模型: 1、安装标注工具 要使用自己的数据来训练模型,首先得先作数据标注,也就是先要告诉机器图像里面有什么物体、物体在位置在哪里,有了这些信息后才能来训练模型。 (1)标注数据文件 目前流行的数据标注文件格式主要有VOC_2007、VOC_2012,该文本格式来源于Pascal VOC标准数据集,这是衡量图像分类识别能力的重要基准之一。本文采用VOC_2007数据格式文件