pytorch版yolov3训练自己数据集
目录 1. 环境搭建 2. 数据集构建 1. xml文件生成需要Labelimg软件 2. VOC2007 数据集格式 3. 创建*.names file, 4. 更新data/coco.data,其中保存的是很多配置信息 5. 更新cfg文件,修改类别相关信息 6. 数据集格式说明 3. 训练模型 4. 测试模型 5. 评估模型 6. 可视化 7. 高级进阶-网络结构更改 1. 环境搭建 将github库download下来。 git clone https://github.com/ultralytics/yolov3.git 建议在linux环境下使用anaconda进行搭建 conda create -n yolov3 python=3.7 安装需要的软件 pip install -r requirements.txt 环境要求: python >= 3.7 pytorch >= 1.1 numpy tqdm opencv-python 其中只需要注意pytorch的安装: 到 https://pytorch.org/ 中根据操作系统,python版本,cuda版本等选择命令即可。 关于深度学习环境搭建请参看: https://www.cnblogs.com/pprp/p/9463974.html anaconda常用用法: https://www.cnblogs.com