理解支持向量机
支持向量机是一个二类分类模型,但也能够扩展为多类分类。 其基于间隔最大化和核技巧的特点能够使它能够灵活处理线性或非线性分类问题。 支持向量机但是形式化为一个凸二次规划问题。学习算法是求解基于 凸二次规划的最优化算法 。 依照训练数据是否线性可分。支持向量机能够分为基于硬间隔的线性可分支持向量机、基于软间隔的线性支持向量机、基于核技巧和软间隔最大化的非线性支持向量机。 三者复杂性是依次添加的。 1、基于硬间隔最大化的线性可分支持向量机 我们知道。感知机和决策树等学习方法没有区分模型的输入空间和特征空间,即觉得两者所处的空间是一样的。 支持向量机的输入空间和特征空间是不同的。输入空间为欧氏空间或离散集合。特征空间是 希尔伯特空间 。 希尔伯特空间能够看作是欧氏空间的扩展,其空间维度能够是随意维的,包括无穷维。并且一个重要的性质是其具有欧氏空间不具备的完备性。 这些特点都是支持向量机在做非线性特征空间映射所须要的。 以下从最简单的线性可分支持向量机入手,学过感知机的都知道,感知机通过训练一个超平面将平面或空间线性可分的点进行划分。 其超平面方程为 w∙x+b=0; 分类决策函数f(x)=sign(w∙x+b)。 线性可分支持向量机也是如此,通过找寻切割平面来划分数据集。不同的是, 感知机的学习策略是误分类点到超平面距离和最小化,而线性可分支持向量机是基于硬间隔最大化的 。