python实现克莱姆法则
文章目录 首先完成python模拟行列式运算 公式分析 模块分析与实现 环境 模块导入 全排列 逆序数 方阵计算 克莱姆法则 *Cramer's rule* 注:本文对numpy对象使用append方法时均使用了深拷贝deepcopy,因为python中对象的赋值是按引用传递的,如果不使用深拷贝在append时会改变原有对象从而覆盖原先的值 首先完成python模拟行列式运算 ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∑ ( − 1 ) t a 1 p 1 a 2 p 2 ⋯ a n p n \begin{vmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_1n}\\ {a_{21}}&{a_{22}}&{\cdots}&{a_2n}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{n1}}&{a_{n2}}&{\cdots}&{a_{nn}}\\ \end{vmatrix}= \sum{(-1)^{t}}{a_{1p_{1}}a_{2p_{2}}}{\cdots}{a_{np_{n}}} ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ a 1 1 a 2 1 ⋮ a n 1 a 1 2 a 2 2 ⋮