数据分析与数据科学的未来
3 月,跳不动了?>>> 根据IADSS联合创始人Usama Fayyad博士,在2019年波士顿ODSC大会上的主题演讲后的采访,我们了解到了数据科学当前和未来的问题以及可能的解决方案。 凯特·斯特拉奇尼(Kate Strachnyi): 鉴于人们在数据中所扮演的角色千差万别,因此将来会采用哪些行为改变或使用哪些工具 ? Usama Fayyad: 我认为组织中的工具和行为变更可能以比实际方式更昂贵的方式进行,这意味着它们正在经历聘用数据科学家的好与坏。他们中的一些人看到了价值,有些人看到了他们聘用中的不合适,现在他们不得不通过解雇或替换来从中调整,以获取更高的价值。我认为由此产生的结果是,项目组要开始进行更彻底的评估。如果你没有一个好的数据科学家,那么距离聘请另一个好的数据科学家的时间也就不远了。 那么,如果你的部门一开始或者已经没有好的科学家在职,那你应该从哪里开始呢?这就是为什么你需要招募人才,对吗?你如何解决?我们认为,通过制定标准,对每个职员的角色,职位以及所需要的培训进行良好的描述,实际上才能使人们更容易地通过很多简历,然后选择那些看起来很有前途的工作,选择可能有价值的面试,知道在面试中可能会问些什么。我们分享了很多候选人的反馈,他们说:“嘿,我在十个不同的地方接受了同一份工作的面试。除了围绕编程的两个小问题外,面试几乎没有什么共同之处。” 凯特·斯特拉奇尼(Kate