矩阵论 - Part II 文章目录 矩阵论 - Part II 概念索引 4 矩阵空间 概念索引 4 向量空间, 最大线性无关组, 线性(子)空间, 线性空间的维数, 基和坐标, 同构映射, 同构空间, 基变换, 过度矩阵, 坐标变换, 线性变换, 线性变换的矩阵表示, 相似矩阵 , 欧式空间, 內积, 范数, Schwartz不等式, 夹角, 规范正交基, Schmidt正交化过程, 正交矩阵 4 矩阵空间 向量空间 向量空间: n n n 维向量的集合 V V V , 如果对加法和数乘运算封闭, 则集合 V V V 称为 向量空间 生成向量空间 子空间 空间维数 0空间 最大线性无关组 : 向量组 A A A 中有 r r r 个向量(设为向量组 A 0 A_0 A 0 )线性无关, 任意 r + 1 r+1 r + 1 个向量线性相关, 则称 A 0 A_0 A 0 是一个 最大线性无关组 , r r r 称为向量组的 秩 , 只含有0向量的向量组没有最大无关组, 规定其秩为 0 0 0 矩阵的秩等于其列向量组的秩, 也等于其行向量组的秩 向量组 B B B 可以由向量组 A A A 线性表示, 则向量组 B B B 的秩不大于向量组 A A A 的秩 等价的向量组秩相等 设 C = A B C = AB C = A B , 则 { R ( C ) ≤ R ( A