贝叶斯决策理论(1)
数据来自于一个不完全清楚的过程。以投掷硬币为例,严格意义上讲,我们无法预测任意一次投硬币的结果是正面还是反面,只能谈论正面或反面出现的概率。在投掷过程中有大量会影响结果的不可观测的变量,比如投掷的姿势、力度、方向,甚至风速和地面的材质都会影响结果。也许这些变量实际上是可以观测的,但我们对这些变量对结果的影响缺乏必要的认知,所以退而求其次,把投掷硬币作为一个随机过程来建模,并用概率理论对其进行分析。 概率有时也被解释为频率或可信度,但是在日常生活中,人们讨论的概率经常包含着主观的因素,并不总是能等同于频率或可信度。比如有人分析中国足球队打进下次世界杯的概率是10%,并不是说出现的频率是10%,因为下次比赛还没有开始。我们实际上是说这个结果出现的可能性,由于是主观的,因此不同的人将给出不同的概率。 在数学上,概率研究的是随机现象背后的客观规律。我们对随机没有兴趣,感兴趣的是通过大量随机试验总结出的数学模型。当某个试验可以在完全相同的条件下不断重复时,对于任意事件E(试验的可能结果的集合,事件是集合,不是动作),结果在出现在E中的次数占比趋近于某个常量,这个常数极限是事件E的概率,用P(E)表示。 我们需要对现实世界建模,将现实世界的动作映射为函数,动作结果映射为数。比如把投硬币看作f(z),z是影响结果的一系列不可观测的变量,x 表示投硬币的结果,x = f(z)