交换机环路

理解STP及端口角色状态

别等时光非礼了梦想. 提交于 2019-12-19 14:22:31
广播风暴 当两个以上的网桥使用或交换机端口交叉连接时,网络拓扑结构会产生回路,引发转发帧的无限循环,并迅速扩散到整个网络的回路中。网络中充斥着大量广播帧导致大面积网络拥塞,这种现象就称为广播风暴(broadcast storm)。 广播风暴产生过程如下: 生成树协议 生成树协议STP(Spanning Tree Protocol)通过在每个网桥或交换机禁用某些端口来工作,这样可避免拓扑环路(即两个网桥之间不允许出现重复路径)。为实现STP还需要各网桥之间按照生成树算法要求进行信息交换,以找出根网桥及其子网桥,并禁用某些会形成环路的端口。信息交换通过网桥协议数据单元(Bridge Protocol Data Unit)来实现。 端口5种状态 网桥或交换机的端口可能有5个状态:阻塞、侦听、学习、转发和禁用。他们之间的状态转换如图所示: 上图中,实线箭头表示端口的正常转换,虚线箭头表示由管理配置引起的改变。 交换机上的端口在启动stp协议后,端口存在的五种状态: 1、禁用(disabled) - 该端口只是相应网管消息,并且必须先转到阻塞状态。这种状态可以是由于端口的物理状(如端口物理层没有up)态导致的,也可能是管理员手工讲端口关闭。 2、 阻塞(blocking) - 处于这个状态的端口不能够参与转发数据报文,但可以接收BPDU配置消息,并交给CPU处理。不过不能发送配置BPDU消息

99%的面试官都会问到交换网络里面冗余和破环的STP协议

有些话、适合烂在心里 提交于 2019-12-08 23:47:05
文章博客详见视频 请戳: https://edu.51cto.com/center/course/lesson/index?id=486147 冗余备份的思想 链路冗余:双上行链路,当一条链路出现问题,数据转发会走另外一条链路 设备冗余:当设备出现故障后,数据流量会走另外一台设备进行转发 不足点:当我们关闭stp协议后 冗余备份组网存在环路问题 二层环路所引发的问题  MAC地址表的震荡问题  二层网络出现广播风暴  主机容易收到我们重复的数据帧  会导致我自己电脑CPU直接100% 环路的出现 电脑CPU直接100% 单链路解决二层环路 单链路其实可以解决我们环路的问题 不足点:单链路容易使网络更加脆弱 容易出现链路和设备的单点故障 时势造英雄---STP技术的诞生 问题1:冗余和备份的组网会导致环路的产生 问题2:非冗余和备份的组网会导致单点故障的产生 时势造英雄 研究出一款协议出来,既能够破除环路也能够拒绝单点故障的现象  STP协议的诞生,STP(生成树协议) 回顾一下网络世界里面关于树的一些常见结构 Linux系统 DNS协议 OSPF协议/IS-IS协议等等 STP技术的作用  消除环路:通过阻断冗余链路来消除网络中可能存在的环路。  链路备份:当活动路径发生故障时,激活备份链路,及时恢复网络连通性。 STP技术当中所用到的BPDU报文

RSTP基础配置

半世苍凉 提交于 2019-12-06 22:52:32
本实验模拟公司网络场景。S3和S4是接入层交换机,负责用户的接入,S1和S2是汇聚层交换机,四台交换机组成一个环形网络。为了防止网络中出现环路,产生网络风暴,所有交换机上都需要运生成树协议。同时为了加快网络收敛速度,网络管理员选择使用RSTP协议,且使得性能较好的S1为根交换机,S2为次根交换机,并配置边缘端口进一步优化公司网络。 实验拓扑 实验编址 实验步骤 1、基础配置 根据实验编址表进行相应的基本IP地址配置,并使用ping命令检测直连链路的连通性 2、配置RSTP基本功能 在汇聚层交换机S1、S2及接入层交换机S3、S4上,把生成树模式由默认的MSTP改为RSTP。由于华为交换机上默认即开启了MSTP,故只需修改生成树模式即可。 配置完成后,用display stp查看生成树的模式及根交换机的位置 上述信息中,CIST Bridge是交换机自己的ID,而CIST Root是根交换机的ID。根交换机是交换机ID最小的交换机,所以,观察可知,S4 是当前的根交换机。 在RSTP构建的树形拓扑中,网络管理员需要设置汇聚层主交换机S1为根交换机,汇聚层交换机S2为备份根交换机。 可以观察到,stp root primary命令修改的是交换机ID中的交换机优先级,把默认 的优先级由32768改为0,所以S1的交换机ID变为最小,是Primary root,即根交换机。

STP生成树协议

谁说胖子不能爱 提交于 2019-12-06 15:00:51
1、环路问题 1.1广播风暴    广播风暴的概念: 网络中的每一台交换机都会不停的收到帧的拷贝,并对其执行泛洪操作,没执行一次泛洪操作,都会收到一个帧的拷贝,如此循环,就会产生广播风暴。    广播风暴带来的问题: 大量消耗网络中的带宽资源以及计算机的处理资源,可能导致计算机瘫痪或者局域网局部或者整个网络瘫痪。 1.2 MAC地址表的翻摆    概念: 当pc发送了一个广播帧A,交换机收到这个广播帧之后会进行泛洪操作。这样以来,这个广播帧会顺时针和逆时针不停的旋转,每次A进入交换内,交换都会不停的修改mac-address表,这样就形成了mac地址表的翻摆。    危害: 快速的mac地址表翻摆会大量消耗交换机的cpu,严重导致网络的拥堵。 1.3 多帧复制    多帧复制的概念: pc1向pc2发送了一个单播帧B,假设SW1的mac-address中没有关于pc2的mac地址,SW2的mac-address中存在pc2的mac地址,SW3的mac-address中也存在关于pc2的mac地址。当pc1向pc2发送一个单播帧B的时候,由于SW1不知道 pc2的mac地址,所以SW1会进行泛洪的操作,这样以来,SW2和SW3都会收到一个单播帧B,又由于,SW2和SW3都存在pc2的mac地址,所以SW2和SW3都会对单播帧B进行对pc2的转发操作

eNSP——RSTP的基础配置

丶灬走出姿态 提交于 2019-12-06 10:34:12
原理: RSTP把原来的5种状态缩减为3种。根据端口是否转发用户流量和学习MAC地址来划分:如果不转发用户流量也不学习MAC地址,那么端口状态就是Discarding状态;如果不转发用户流量但是学习MAC地址,那么端口状态就是Learning状态;如果既转发用户流量又学习MAC地址,那么端口状态就是Forwarding状态。 例子: 本实验模拟公司网络场景。S3和S4是接入层交换机,负责用户的接入,S1和S2 是汇聚层交换机,四台交换机组成一个环形网络。为了防止网络中出现环路,产生网络风暴,所有交换机上都需要运行生成树协议。同时为了加快网络收敛速度,网络管理员选择使用RSTP协议,且使得性能较好的S1为根交换机,S2为次根交换机,并配置边缘端口进一步优化公司网络。 拓扑图: 实验编址: 1.基础配置 进行PC机的基础配置。开启后,测试它们的连通性。 2.配置RSTP的基础功能 像这样开启S1 S2 S3 S4的stp功能(其他同理) 配置完后可以用命令 display stp 查看一下生成树的模式和根交换机的位置 我们网络管理员需要设置汇聚层主交换机S1为根交换机,S2为备份交换机。 现在我们再看一下每台交换机上的端口角色及状态 我们发现S1根交换机上无根端口,全部都是指定端口;S2 GE0/0/1是根端口;S3上E0/0/2是根端口,E0/0/1 E0/0/3是指定端口,E0/0

eNSP——STP配置和选路规则

血红的双手。 提交于 2019-12-06 10:26:50
原理: STP是用来避免数据链路层出现逻辑环路的协议,使用BPDU传递网络信息计算出一根无环的树状网络结构,并阻塞特定端口。 在网络出现故障的时候,STP能快速发现链路故障,并尽快找出另外一条路径进行数据传输。 交换机上运行的STP通过BPDU信息的交互,选举根交换机,然后每台非根交换机选择用来与根交换机通信的根端口,之后每个 网段选择用来转发数据至根交换机的指定端口,最后剩余端口则被阻塞。 在STP工作过程中,根交换机的选举,根端口、指定端口的选举都非常重要。华为VRP提供了各种命令来调整STP的参数,用 以优化网络。例如,交换机优先级、端口优先级、端口代价值等。 例子: 公司购置了4台交换机,组建网络。考虑到网络的可靠性,将4台交换机如图4-1所示拓扑搭建。由于默认情况下,交换机之间运 行STP后,根交换机、根端口、指定端口的选择将基于交换机的MAC地址的大小,因此带来了不确定性,极可能由此产生隐患。 公司网络规划,需要S1作为主根交换机,S2作为S1的备份根交换机。同时对于S4交换机,E0/0/1接口应该作为根端口。对于S2和 S3之间的链路,应该保证S2的E0/0/3接口作为指定端口。同时在交换机S3上,存在两个接口E 0/0/10、E 0/0/11连接到测试PC,测试 PC经常上下线网络,需要将交换机S3与之相连的对应端口定义为边缘端口,避免测试电脑上下线对网络产生的影响

【实战演练】Packet Tracer玩转CCNA实验02-VLAN基本配置

别说谁变了你拦得住时间么 提交于 2019-12-06 09:56:27
【实战演练】Packet Tracer玩转CCNA实验02-VLAN基本配置 实验1(配置vlan access): 搭建拓扑图 配置命令 结果验证 理论解释 实验2(配置vlan trunk): 结果验证 理论解释(选修) #本文欢迎转载,转载请注明出处和作者。 一般教程第一课都讲交换机/路由器的操作系统(IOS)的基本操作,例如介绍普通模式、特权模式,修改密码等。 我们反其道而行之,先动手做VLAN的划分操作,先讲实操,再说概念。 实验1(配置vlan access): 搭建拓扑图 实验需求:实验的拓扑如上图,PC1、PC2、PC3、PC4连接同一台交换机,PC1、PC3的人属于同一个部门(如销售部),PC2、PC4的人属于同一个部门(财务部),由于安全要求,希望销售部的员工之间可以互访,财务部的员工之间可以互访,但是跨部门员工之间不能互访。 配置命令 先通过拖动的方式,拖动一台交换机,4台PC,并且通过自动连线的方式连接PC与交换机。 然后通过选择设置,显示端口标签,方便查看PC与交换机的连接端口。 点击交换机,选择CLI标签,可以输入命令,命令如下。 Switch>en Switch#conf t Switch(config)#vlan 10 Switch(config-vlan)name xiaoshou Switch(config-vlan)vlan 20 Switch

某企业交换网络综合配置

痞子三分冷 提交于 2019-12-06 03:30:01
1、项目背景 某企业在不断发展,业务量也在不断扩大,同时对计算机网络应用的依赖程度与日俱增 为适应互联网时代的发展,目前公司正面临转型,急需成立IT部门.你作为几年前入职的网络工程师被任命为IT部门的技术经理,并担任本次网络规划的项目经理.你需要根据企业网络需要优化现有网络资源。 假设某企业有员工1000人,有销售部(300人),技术部(100人),财务部(50人),综合部(50人),研发部(500人);各部门相互隔离,完成所有网络的互联互通。 2、项目需求 公司项目经理已经按照上述要求对网络设备进行了相应的地址规划.要求先对网络设备进行配置使之可以实现互连互通,具体要求如下: l 按照拓扑图完成IP地址规划表的规划; l 配置网络设备的接口IP地址; l 给交换机接口配置正确的接口模式(如access、trunk等) l 配置链路聚合; l 配置生成树协议; l 配置Vlan间路由; 3、项目拓扑 4、项目网络地址规划 设备名称 接口 IP 地址 子网掩码 描述 PC1 Ethernet0/0/1 10.36.50.1 /16 研发部vlan50 PC2 Ethernet0/0/1 10.36.10.1 /16 销售部vlan10 PC3 Ethernet0/0/1 10.36.20.1 /24 技术部vlan20 PC4 Ethernet0/0/1 10.36.50.2 /16

交换机2

我的未来我决定 提交于 2019-12-06 02:19:22
结构 交换机原理级联方式 这是最常用的一种组网方式,它通过交换机上的 级联口 (UpLink)进行连接。需要注意的是交换机不能无限制级联,超过一定数量的交换机进行级联,最终会引起 广播风暴 ,导致网络性能严重下降。 交换机原理聚合方式 前面我们已接触到 端口聚合 的特点,此种方式相当于用多个端口同时进行级联,它提供了更高的互联 带宽 和线路 冗余 ,使网络具有一定的可靠性。 交换机原理堆叠方式 交换机的堆叠是扩展端口最快捷、最便利的方式,同时堆叠后的带宽是单一交换机 端口速率 的几十倍。但是,并不是所有的交换机都支持堆叠的,这取决于交换机的品牌、型号是否支持堆叠;并且还需要使用专门的堆叠电缆和堆叠模块;最后还要注意同一叠堆中的交换机必须是同一品牌。 交换机原理分层方式 这种方式一般应用于比较复杂的交换机结构中,按照功能可划分为: 接入层 、 汇聚层 、核心层。 交换机原理后记 作为网络的重要连接设备,交换机在实际使用中相当频繁。对于一般家庭用户而言,比较复杂的应用就是交换机的级联结构了;而三层路由、堆叠等高级应用一般在企业中应用较多。 网络环路 以太网 是总线或星型结构,不能构成环路,否则会产两个严重后果: (1)产生 广播风暴 ,造成网络堵塞。 (2)克隆帧会在各个口出现,造成地址学习(记录帧源地址)混乱。 解决环路问题方案: (1)网络在设计时,人为的避免产生环路。 (2)使用

交换机级联,堆叠,集群技术介绍(转载)

孤人 提交于 2019-12-06 01:51:55
在多交换机的局域网环境中,交换机的级联、堆叠和集群是3种重要的技术。 级联技术可以实现多台交换机之间的互连; 堆叠技术可以将多台交换机组成一个单元,从而提高更大的端口密度和更高的性能; 集群技术可以将相互连接的多台交换机作为一个逻辑设备进行管理,从而大大降低了网络管理成本,简化管理操作。 1. 级联 级联可以定义为两台或两台以上的交换机通过一定的方式相互连接。 城域网是交换机级联的极好例子。目前各地电信部门已经建成了许多市地级的宽带IP城域网。这些宽带城域网自上向下一般分为3个层次:核心层、汇聚层、接入层。核心层一般采用千兆以太网技术,汇聚层采用1000M/100M以太网技术,接入层采用100M/10M以太网技术,所谓"千兆到大楼,百兆到楼层,十兆到桌面". 这种结构的宽带城域网实际上就是由各层次的许多台交换机级联而成的。核心交换机(或路由器)下连若干台汇聚交换机,汇聚交换机下联若干台小区中心交换机,小区中心交换机下连若干台楼宇交换机,楼宇交换机下连若干台楼层(或单元)交换机(或集线器)。 交换机间一般是通过普通用户端口进行级联,有些交换机则提供了专门的级联端口(Uplink Port)。这两种端口的区别仅仅在于普通端口符合MDI标准,而级联端口(或称上行口)符合MDIX标准。由此导致了两种方式下接线方式度不同:当两台交换机都通过普通端口级联时,端口间电缆采用直通电缆