统计学基础之常用统计量和抽样分布
目录: 一、统计量 1、概念 2、常用统计量 二、抽样分布 1、常见三大抽样分布 一、统计量: 1、概念: 统计量是统计理论中用来对数据进行分析、检验的变量。在实际应用中,当我们从某个总体中抽取一个样本(X1,X2,X3......,Xn)后,并不能直接用它对总体的有关性质和特征进行推断,因为样本虽说是从总体中获取的代表,含有总体性质的信息,但还是会比较分散。当我们需要将统计的推断变成可能的,必须要把分散在样本中的信息集中起来,针对不同的目的,构造不同的样本函数,这种函数在统计学中成为统计量。 统计量是样本的一个函数。有样本构造具体的统计量,实际是对样本所含的总体信息按照一些要求进行加工处理,把分散在样本中的信息集中都统计量的取值上。不同的统计推断问题要求构造不同的统计量。统计量是统计推断的基础,相当于概率论中的随机变量。 在统计量的公式中不能依赖于总体分布的未知参数,如包含E(X),D(X)的都不是统计量。 2、常用统计量: 一般在概率论中,将数学期望和方差等概念用‘矩’的概念描述。当n充分大时,有定理可以保证经验分布函数Fn(x)很靠近总体分布函数F(x)。所以,经验分布函数Fn(x)的各阶矩就反映了总体各阶矩的信息。通常把经验分布函数的各阶矩称为样本各阶矩。常用的样本各阶矩及其函数都是实际应用中的具体统计量。 2.1、样本均值 ,反映出总体X数学期望的信息。 2.2