检验统计量

t分布, 卡方x分布,F分布

非 Y 不嫁゛ 提交于 2020-03-12 02:32:01
T分布:温良宽厚 本文由“医学统计分析精粹”小编“Hiu”原创完成,文章采用知识共享Attribution-NonCommercial-NoDerivatives 4.0国际许可协议(http://creativecommons.org/licenses/by-nc-nd/4.0/)进行许可,转载署名需附带本号二维码,不可用于商业用途,不允许任何修改,任何谬误建议,请直接反馈给原作者,谢谢合作! 命名与源起 “t”,是伟大的Fisher为之取的名字。Fisher最早将这一分布命名为“Student's distribution”,并以“t”为之标记。 Student,则是William Sealy Gosset(戈塞特)的笔名。他当年在爱尔兰都柏林的一家酒厂工作,设计了一种后来被称为t检验的方法来评价酒的质量。因为行业机密,酒厂不允许他的工作内容外泄,所以当他后来将其发表到至今仍十分著名的一本杂志《Biometrika》时,就署了student的笔名。所以现在很多人知道student,知道t,却不知道Gosset。(相对而言,我们常说的正态分布,在国外更多的被称为高斯分布……高斯~泉下有知的话,说不定会打出V字手势~欧耶!) 看懂概率密度图 这一点对于初学者尤为重要,相信还是有不少人对正态分布或者t分布的曲线没有确切的理解。 首先,我们看一下频率分布直方图,histogram:

统计1:概述

て烟熏妆下的殇ゞ 提交于 2020-03-07 06:57:13
概率论是人们在长期实践中发现的理论,是客观存在的。自然界和社会上发生的现象是多种多样的,有一类现象,在一定条件下必然发生,称作确定性现象,而概率论研究的现象是不确定性现象,嗯嗯,醒醒,概率论研究的对象是 随机现象 。那什么是随机现象呢?在个别试验中呈现出不确定性,而在大量重复实验中呈现出固有规律性的现象,称作随机现象,在大量重复实验中所呈现的固有规律,是统计规律性,也就是概率。 一,概率和频率 在提到概率之前,不得不说频率。对于一个随机事件来说,在一次试验中可能发生,也可能不发生,那么,如何表征事件在一次试验中发生的可能性大小呢?为了解答这个问题,引入了频率。频率描述了事件发生的频繁程度,频率越大,事件发生的越频繁,这意味着事件在一次试验中发生的可能性越大。我们定义,概率表征事件在一次试验中发生的可能性大小,因此,可从频率引出概率。 大数定理和中心极限定理是概率论的基本理论。大数定理论证了频率具有稳定性,中心极限定理表明了正态分布是普遍适用的。 概率是事件的固有规律,必须是稳定的一个数值,频率具有稳定性吗?在长期实践中,当试验次数不断增大时,事件发生的频率稳定在一个值附近,这一客观事实证明频率具有稳定性。 伯努利大数定理 用数学公式证明了频率的稳定性,因此,在实际应用中,当试验次数很大时,可以用事件的频率来代替事件的概率,用于表征事件发生的可能性大小。

统计学基础之常用统计量和抽样分布

被刻印的时光 ゝ 提交于 2020-01-24 23:41:44
目录: 一、统计量 1、概念 2、常用统计量 二、抽样分布 1、常见三大抽样分布 一、统计量: 1、概念: 统计量是统计理论中用来对数据进行分析、检验的变量。在实际应用中,当我们从某个总体中抽取一个样本(X1,X2,X3......,Xn)后,并不能直接用它对总体的有关性质和特征进行推断,因为样本虽说是从总体中获取的代表,含有总体性质的信息,但还是会比较分散。当我们需要将统计的推断变成可能的,必须要把分散在样本中的信息集中起来,针对不同的目的,构造不同的样本函数,这种函数在统计学中成为统计量。 统计量是样本的一个函数。有样本构造具体的统计量,实际是对样本所含的总体信息按照一些要求进行加工处理,把分散在样本中的信息集中都统计量的取值上。不同的统计推断问题要求构造不同的统计量。统计量是统计推断的基础,相当于概率论中的随机变量。 在统计量的公式中不能依赖于总体分布的未知参数,如包含E(X),D(X)的都不是统计量。 2、常用统计量:   一般在概率论中,将数学期望和方差等概念用‘矩’的概念描述。当n充分大时,有定理可以保证经验分布函数Fn(x)很靠近总体分布函数F(x)。所以,经验分布函数Fn(x)的各阶矩就反映了总体各阶矩的信息。通常把经验分布函数的各阶矩称为样本各阶矩。常用的样本各阶矩及其函数都是实际应用中的具体统计量。 2.1、样本均值 ,反映出总体X数学期望的信息。 2.2

数据学习(十)-假设检验

北慕城南 提交于 2020-01-06 14:44:54
目录 1.假设检验的基本问题 2.一个总体参数的检验 3. 两个总体参数的检验 1.假设检验的基本问题 假设检验是推断统计的另一项重要内容,它与参数估计类似,但角度不同,参数估计是利用样本信息推断未知的总体参数,而假设检验则是先对总体参数提出一个假设值,然后利用样本信息判断这一假设是否成立。 1.1 假设的陈述 1.对总体参数的具体数值所作的陈述,称为假设,或称为统计假设。 2. 先对总体参数提出某种假设,然后利用样本信息判断假设是否成立的过程,称为假设检验。 3. 通常将研究者想收集证据予以支持的假设称为备择假设,或称为研究假设,用H1或Ha表示。 4.通常将研究者想收集证据予以反对的假设称为原假设,或称零假设,用H0表示。 备选假设具有特定的方向性,并含有符号“>”或“<”的假设检验,称为单侧检验或单尾检验。 在单侧检验中,由于研究者感兴趣的方向不同,又可以分为左侧检验和右侧检验。如果研究者选择的备选假设的方向是“<”,称为左侧检验反之选择是“>”,称为右侧检验。 备选假设没特定的方向性,并含有符号“!=”的假设检验,称为双侧检验或双尾检验。 1.2 两类错误与显著性水平 当原假设为真时拒绝原假设,所犯的错误称为第一类错误, 又称弃真错误。犯第一类错误的概率通常记为a. 当原假设为假时没有拒绝原假设,所犯的错位称为第二类错误,又称取伪错误。犯第二类错误的概率通常记为b。

逻辑回归模型

不打扰是莪最后的温柔 提交于 2019-12-30 12:02:19
逻辑回归模型 - zgw21cn - 博客园 逻辑回归模型 1. 逻辑 回 归 模型 1.1逻辑回归模型 考虑具有p个独立变量的向量 ,设条件概率 为根据观测量相对于某事件发生的概率。逻辑回归模型可表示为 (1.1) 上式右侧形式的函数称为称为逻辑函数。下图给出其函数图象形式。 其中 。如果含有名义变量,则将其变为dummy变量。一个具有k个取值的名义变量,将变为k-1个dummy变量。这样,有 (1.2) 定义不发生事件的条件概率为 (1.3) 那么,事件发生与事件不发生的概率之比为 (1.4) 这个比值称为事件的发生比(the odds of experiencing an event),简称为odds。因为0<p<1,故odds>0。对odds取对数,即得到线性函数, (1.5) 1.2极大似然函数 假设有n个观测样本,观测值分别为 设 为给定条件下得到 的概率。在同样条件下得到 的条件概率为 。于是,得到一个观测值的概率为 (1.6) 因为各项观测独立,所以它们的联合分布可以表示为各边际分布的乘积。 (1.7) 上式称为n个观测的似然函数。我们的目标是能够求出使这一似然函数的值最大的参数估计。于是,最大似然估计的关键就是求出参数 ,使上式取得最大值。 对上述函数求对数 (1.8) 上式称为对数似然函数。为了估计能使 取得最大的参数 的值。 对此函数求导,得到p+1个似然方程

MATLAB概率统计函数(4)

白昼怎懂夜的黑 提交于 2019-12-24 12:06:00
4.8 假设检验 4.8.1 已知,单个正态总体的均值μ的假设检验(U检验法) 函数 ztest 格式 h = ztest(x,m,sigma) % x为正态总体的样本,m为均值μ0,sigma为标准差,显著性水平为0.05(默认值) h = ztest(x,m,sigma,alpha) % 显著性水平为 alpha [h,sig,ci,zval] = ztest(x,m,sigma,alpha,tail) %sig为观察值的概率,当sig为小概率时则对原假设提出质疑,ci为真正均值μ的 1- alpha置信区间,zval为统计量的值。 说明 若h=0 ,表示在显著性水平 alpha下,不能拒绝原假设; 若h=1 ,表示在显著性水平 alpha下,可以拒绝原假设。 原假设:, 若tail=0 , 表示备择假设:(默认,双边检验); tail=1,表示备择假设:(单边检验); tail=-1 ,表示备择假设: (单边检验)。 例 4-74 某车间用一台包装机包装葡萄糖,包得的袋装糖重是一个随机变量,它服从正态分布。当机器正常时,其均值为0.5公斤,标准差为0.015。某日开工后检验包装机是否正常,随机地抽取所包装的糖 9 袋,称得净重为(公斤) 0.497, 0.506, 0.518, 0.524, 0.498, 0.511, 0.52, 0.515, 0.512 问机器是否正常?

数理统计要点

*爱你&永不变心* 提交于 2019-12-03 07:48:03
虽然我也粗读过统计学的几本书,但从易懂性来说,都没有学校老师给的ppt好,或者说自己看书比较困难,但是听老师讲课就很容易懂。所以,我建议有条件的同学能够选修统计学这门课,没条件的同学可以去网上找一些相关视频,配套书籍可以选择茆诗松的《概率论与数理统计》。另外,《Head First Statistics》一书可以用来预热。 学了统计学,你至少应该知道: 基本的抽样方法 数据分布的描述统计量有哪些?一组样本数据分布的数值特诊可以从三个方面进行描述: 描述水平的统计量: 数据的水平:也称为集中趋势或位置度量,反应全部数据的数值大小。 均值、中位数、分位数、众数 描述差异的统计量 数据的差异:反应数据间的离散程度。 极差和四分位差、方差和标准差、变异系数、标准分数 描述分布形状的统计量 分布的形状:反应数据分布的偏度和峰度。 偏度系数、峰度系数 你需要了解一些重要的分布,比如正态分布、chi-square分布、t分布、F分布等。 假设检验是用来做什么的、置信区间的概念、MSE (Mean Squared Error)均方误差、RMSE(Root Mean Squard Error)均方根误差、MAE(平均绝对误差)、R-squared(拟合优度)的含义等等。 怎样进行数据预处理 怎样整理和显示数据 你需要了解各种图的作用和适用场景,常用图包括条形图、饼图、直方图、折线图、箱线图、散点图

第二类错误|检验统计量|左偏|右偏|P值

青春壹個敷衍的年華 提交于 2019-12-03 05:02:17
6 第二类错误在 H 0 中的假设值差别越大时增大 ? 不对,第二类错误在H0中的假设值差别越大时变小。 检验统计量有哪些? 根据假设内容确定是左偏还是右偏? P 值是在原假设为真的条件下,检验统计量大于或等于其观察值(样本)的概率? 对的, P 值是以假设值为临界值时犯第一类错误的概率。 P- 值是在原假设为真的条件下某一统计量的取值以其观察值为最小值或最大值的事件的小概率,或说某一统计量的取值以其观察值为最小值或最大值是一个小概率事件,此小概率就是 P 。 来源: https://www.cnblogs.com/yuanjingnan/p/11779088.html

统计学第七版学习笔记

三世轮回 提交于 2019-11-29 04:25:25
一、导论 统计应用领域:企业发展战略、产品质量管理、市场研究、财务分析、经济预测、人力资源管理。 统计数据的分类:按计量尺度:分类数据、顺序数据、数值型数据(★)         按收集方法:观测数据、实验数据         按时间状况:截面数据、时间序列数据 二、数据的搜集 数据来源:调查或实验 调查方法分类:概率抽样:简单随机抽样、分层抽样、整群抽样、系统抽样、多阶段抽样        非概率抽样:方便抽样、判断抽样、自愿样本、滚雪球抽样、配额抽样 搜集数据的基本方法:自填式、面访式、电话式、观察式 数据的误差:抽样误差       非抽样误差:抽样框误差、回答误差、无回答误差、调查员误差、测量误差 三、数据的图标展示 数据的预处理:数据审核、筛选、排序 品质数据包括分类数据和顺序数据,做分类整理   分类数据:计算频数与频数分布,或比例、比率等。图示有条形图、帕累托图、饼图、环形图   顺序数据:累积频数与累积频率。图示分类图示+累积频数分布或频率图 数值型数据做分组整理,有单变量值分组和组距分组两种,组距分组包括等距分组和不等距分组   图示:分组数据——直方图、未分组数据——茎叶图和箱线图、时间序列数据——线图、多变量数据——(散点图、气泡图、雷达图) 四、数据的概括性度量 数据分布特征:集中趋势的度量:分类数据——众数,顺序数据——中位数、四分位数,数值型数据—

第五周:统计量与抽样分布

无人久伴 提交于 2019-11-27 19:38:02
统计量 统计量是统计理论中用来对数据进行分析、检验的变量。 宏观量 是大量 微观量 的统计 平均值 ,具有统计平均的意义,对于单个微观粒子,宏观量是没有意义的. 相对于微观量的统计平均性质的宏观量也叫统计量。需要指出的是,描写宏观世界的 物理量 例如速度、动能等实际上也可以说是宏观量,但宏观量并不都具有统计平均的性质,因而宏观量并不都是统计量。 样本均值 样本均值(sample mean)又叫 样本均数 。即为样本的均值。 均值是表示一组数据 集中趋势 的量数,是指在一组数据中所有数据之和再除以这组数据的个数。它是反映数据集中趋势的一项指标。 样本均值则是在总体中的样本数据的均值。 样本: 样本(sample),是指从 总体 中抽出的一部分 个体 。样本中所包含个体数目称 样本容量 或含量,用符号N或n表示。 均值: 均值是表示一组数据 集中趋势 的量数,是指在一组数据中所有数据之和再除以这组数据的个数。它是反映数据集中趋势的一项指标。 解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。在统计工作中,平均数( 均值 )和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。 设 是来自正态总体 的样本, 是样本均值,则有 : 样本方差 先求出 总体 各单位变量值与其 算术平均数 的 离差 的平方,然后再对此变量取 平均数 ,就叫做 样本方差 。