问题 For the inductive type nat , the generated induction principle uses the constructors O and S in its statement: Inductive nat : Set := O : nat | S : nat -> nat nat_ind : forall P : nat -> Prop, P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n But for le , the generated statement does not uses the constructors le_n and le_S : Inductive le (n : nat) : nat -> Prop := le_n : n <= n | le_S : forall m : nat, n <= m -> n <= S m le_ind : forall (n : nat) (P : nat -> Prop), P n -> (forall