共模电压

运算放大器的16个基础知识点

怎甘沉沦 提交于 2020-02-24 12:43:14
1、一般反相/同相放大电路中都会有一个平衡电阻,这个平衡电阻的作用是什么呢? (1) 为芯片内部的晶体管提供一个合适的静态偏置。 芯片内部的电路通常都是直接耦合的,它能够自动调节静态工作点,但是,如果某个输入引脚被直接接到了电源或者地,它的自动调节功能就不正常了,因为芯片内部的晶体管无法抬高地线的电压,也无法拉低电源的电压,这就导致芯片不能满足虚短、虚断的条件,电路需要另外分析。 (2)消除静态基极电流对输出电压的影响,大小应与两输入端外界直流通路的等效电阻值平衡,这也是其得名的原因。 2、同相比例运算放大器,在反馈电阻上并一个电容的作用是什么? (1)反馈电阻并电容形成一个高通滤波器, 局部高频率放大特别厉害。 (2)防止自激。 3、运算放大器同相放大电路如果不接平衡电阻有什么后果? (1)烧毁运算放大器,有可能损坏运放,电阻能起到分压的作用。 4、在运算放大器输入端上拉电容,下拉电阻能起到什么作用? (1)是为了获得正反馈和负反馈的问题,这要看具体连接。比如我把现在输入电压信号,输出电压信号,再在输出端取出一根线连到输入段,那么由于上面的那个电阻,部分输出信号通过该电阻后获得一个电压值,对输入的电压进行分流,使得输入电压变小,这就是一个负反馈。因为信号源输出的信号总是不变的,通过负反馈可以对输出的信号进行矫正。 5、运算放大器接成积分器,在积分电容的两端并联电阻RF

差动放大器总结

狂风中的少年 提交于 2020-02-18 02:06:10
差动工作方式优点: 1. 对环境噪声具有更强的抗干扰性; 2. 抑制共模噪声; 3. 增大了最大电压摆幅; 4. 更简单的偏执电路和更高的线性度 一、基本概念(公式推导略): 1. 差动信号:两个结点电位之差,并且这两个结点相对于某个固定电位大小相等,极性相反,严格地说,这两个电位与固定结点的阻抗也必须相等。 在差动信号中,这个固定的中心电位称为 共模电平。 2. 基本差动对:为了避免增益、摆幅、波形等受器件偏置电流的影响,引入电流源来提供电路的偏置电流,如下图: 虽然在这里,电流源的目的是抑制输入共模电平的变化对管子和输出电平的影响,但是并不意味着输入共模电平的值可以任意取,为了保证管子工作在饱和区,输入共模电平允许范围如下: 考虑输出电压的摆幅,显然输入共模电平越小(输出最大值V DD ,最小值为V in,CM -V TH ),允许的输出摆幅就越大,但实际中,前级电路可不能提供这么低的电平。 考虑增益,研究电路的小信号特性,分为两种方法:叠加法和半边电路法。叠加法主要思想是利用戴维宁等效分别独立考虑两个输入端,求出V X ,V Y ;半边电路法也是利用戴维南等效的思想,因为完全对称,所以只考虑一边电路的工作情况,将尾巴结点当成交流地对待。半边电路法为全差动的对称差动对提供了一个简便的方法,对于不是全差动的输入信号,我们可以把信号看成一个差动输入和一个共模变化的叠加

EMC整改报告-待续

最后都变了- 提交于 2019-12-06 06:04:34
EMC 整改报告 一、 EMC 概述 1. EMC 设计主要针对 EMI+EMS ,常见的 EMI 测试包括电源线的传导骚扰( CE )和辐射发射( RE )测试, EMS 测试包括: ESD 、电源线的 EFT 、电源线的雷击和浪涌测试、电源线的抗扰度测试 ; 三要素是干扰源、耦合途径、敏感器件;主要对策:疏(滤波、接地)和堵(屏蔽) 2. 用高频的视角看问题 3. 所有信号都是从地流回去的 4. 共模干扰与差模干扰: 共模干扰往往是指同时加载在各个输入信号接口段的共有的信号干扰。共模干扰是在信号线与地之间传输,属于非对称性干扰。共模干扰好比两个人同时向前或者向后推你,于此相对的差模干扰则是一前一后在拉你。 二、 EMC 测试模型: 1. 辐射发射测试: 一般都是先将水平和垂直做一遍测试,这时主要是测峰值,然后在针对峰值读点,读点测的是平均值,TUV等认证时也是读点; 2. 传导骚扰测试: 2.1 需要的仪器:接收机、 LISN 网络(三相、单相)、参考接地,一个重要的条件是一个 2m*2m 以上面积的参考地平面,并超出 EUT 边界至少 0.5m; 一般在屏蔽室内进行,如下图 2.2 电源口传导骚扰测试的拓扑图如下 , 此时构成了一个环路,成为了天线,此处应注意电源线和接地线之间的面积,并且尽量将 EUT 的接地线接到 LISN 上,而不要就近接到参考地金属板上( 50R

EMC诊断技巧与案例解析(三)

荒凉一梦 提交于 2019-12-06 06:03:33
1 静电(ESD)整改定位 针对静电,最重要的一点是 路径 。没有路径,静电无法泄放,即没有静电问题。所以分析静电时,主要分析路径,这是静电诊断分析的思路。 首先判定是否有路径,如果有,则确定静电电流是否流入敏感电路,如果是则进行切断,可采取高阻抗阻挡或低阻抗泄放的措施。如果没有流入,看下周围是否有敏电感。有敏感电路的话,则对敏感电路进行处理,如加滤波、屏蔽等措施,如果没有敏感电路,有可能是整个放电回路阻抗过高,比如地阻抗。如果无路径,则人为制造低阻抗路径进行泄放。 案例一、塑料外壳静电防护 塑料外壳防静电效果好,但绝缘距离是关键 4mm可满足8KV空气放电 静电防护有很多措施,比如元器件选择、电路设计、PCB设计、结构设计等等,从结构设计的角度考虑, 塑料外壳 是最好的静电防护措施,因为塑料外壳是绝缘材料,静电无法泄放。 关键点: 使用塑料外壳防护静电,绝缘距离如果不满足,同样会存在静电问题,特别是进行空气放电时容易与内部电路形成拉弧,从而导致静电问题。 如上图就是使用塑料外壳但内部器件与过孔离外壳过近导致绝缘距离不够,空气放电时与内部电路拉弧导致IC损坏。 案例二、敏感信号受干扰 关键信号需做滤波处理,如片选、复位、采样等 静电防护除了塑料外壳,还有一种是 金属外壳接地防护 。针对金属外壳防静电问题,重点是关注接地良好性(大面积接地、不能有氧化漆等)。

开关电源的传导与辐射

点点圈 提交于 2019-12-06 06:00:54
1 概述 目前,电子产品电磁兼容问题越来越受到人们的重视,尤其是世界上发达国家,已经形成了一套完整的电磁兼容体系,同时我国也正在建立电磁兼容体系,因此,实现产品的电磁兼容是进入国际市场的通行证。对于开关电源来说,由于开关管、整流管工作在大电流、高电压的条件下,对外界会产生很强的电磁干扰,因此开关电源的传导发射和电磁辐射发射相对其它产品来说更加难以实现电磁兼容,但如果我们对开关电源产生电磁干扰的原理了解清楚后,就不难找到合适的对策,将传导发射电平和辐射发射电平降到合适的水平,实现电磁兼容性设计。 2 开关电源传导骚扰 2.1 传导发射的产生 开关电源的传导骚扰是通过电源的输入电源线向外传播的电磁干扰。在开关电源输入电源线中向外传播的骚扰,既有差模骚扰、又有共模骚扰,共模骚扰比差模骚扰产生更强的辐射骚扰。传导骚扰的测试频率范围为150KHz~30MHz,限值要求如下表1 所示: 在0.15MHz~1MHz 的频率范围内,骚扰主要以共模的形式存在,在1MHz~10MHz 的频率范围内,骚扰的形式是差模和共模共存,在10MHz 以上,骚扰的形式主要以共膜为主。传导发射的差模骚扰的产生主要是由于开关管工作在开关状态,当开关管开通时,流过电源线的电流线形上升,开关管关断时电流突变为0,因此流过电源线的电流为高频的三角脉动电流,含有丰富的高频谐波分量,随着频率的升高,该谐波分量的幅度越来越小

实例解读EMC电磁兼容的共模干扰与差模干扰,如何抑制

守給你的承諾、 提交于 2019-12-04 06:04:00
一、什么是共模与差模 电器设备的电源线,电话等的通信线, 与其它设备或外围设备相互交换的通讯线路,至少有两根导线,这两根导线作为往返线路输送电力或信号,在这两根导线之外通常还有第三导体,这就是"地线"。 电压和电流的变化通过导线传输时有两种形态, 一种是两根导线分别做为往返线路传输, 我们称之为"差模";另一种是两根导线做去路,地线做返回传输, 我们称之为"共模"。 如上图, 蓝色信号是在两根导线内部作往返传输的,我们称之为"差模";而黄信号是在信号与地线之间传输的,我们称之为"共模"。 任何两根电源线或通信线上所存在的干扰,均可用共模干扰和差模干扰来表示: 1、共模干扰 共模干扰在导线与地(机壳)之间传输,属于非对称性干扰,它定义为任何载流导体与参考地之间的不希望有的电位差; 共模干扰的电流大小不一定相等,但是方向(相位)相同的。电气设备对外的干扰多以共模干扰为主,外来的干扰也多以共模干扰为主,共模干扰本身一般不会对设备产生危害,但是如果共模干扰转变为差模干扰,干扰就严重了,因为有用信号都是差模信号。 2、差模干扰 差模干扰在两导线之间传输,属于对称性干扰,它定义为任何两个载流导体之间的不希望有的电位差。在一般情况下,共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。差模干扰幅度小、频率低、所造成的干扰较小。 差模干扰的电流大小相等,方向(相位)相反

电磁兼容设计中无法忽视的高频效应

我是研究僧i 提交于 2019-12-03 14:05:17
摘要 电磁兼容的问题常发生于高频状态下,个别问题(电压跌落与瞬时中断等)除外。所以在 电磁兼容 设计中一定要有高频思维,总而言之,就是注意高频条件下的器件的特性和电路的特性,在高频情况下和常规频率状态下是不一样的,如果仍然按照普通的工程思维来判断分析,则会走入设计的误区。 关键词 高频 电容 电感 线缆 器件及电路在高频条件的特征 一 电容 在中低频或直流情况下,电容就是一个储能组件,只表现为一个电容的特性,但在高频情况下,它就不仅仅是个电容了,它有一个理想电容的特性,有漏电流(在高频等效电路上表现为R),有引线电感,还有导致电压脉冲波动情况下发热的ESR(等效串联电阻),如图: 从这个图上分析,能帮我们设计师得出很多有益的设计思路。 首先,按照常规思路,Z=1/(2πfC),Z是电容的容抗,应该是频率越高,容抗越小,滤波效果越好,即越高频的杂波越容易被泄放掉,但事实并非如此,因为引线电感的存在,一颗电容仅仅在其1/2πfc=2πf L等式成立的时候,才是整体阻抗最小的时候,滤波效果才最好,频率高了低了都会滤波效果下降,由此就可以分析出结论,为什么在IC的VCC端都会加两颗电容,一颗电解电容,一颗陶瓷电容,容值一般相差100倍以上,用来增加电容的滤波带宽。 解决方法: 使用BDL滤波器代替原来的多颗普通退耦电容。 BDL是一种新生代电容器。在高频状态下

常见EMC疑问及对策

≡放荡痞女 提交于 2019-11-26 04:54:00
1. 为什么要对产品做电磁兼容设计? 答:满足产品功能要求、减少调试时间,使产品满足电磁兼容标准的要求,使产品不会对系统中的其它设备产生电磁干扰。 2. 对产品做电磁兼容设计可以从哪几个方面进行? 答:电路设计(包括器件选择)、软件设计、线路板设计、屏蔽结构、信号线/电源线滤波、电路的接地方式设计。 3. 在电磁兼容领域,为什么总是用分贝(dB)的单位描述?10mV是多少dBmV 答:因为要描述的幅度和频率范围都很宽,在图形上用对数坐标更容易表示,而dB就是用对数表示时的单位,10mV是20dBmV。 4. 为什么频谱分析仪不能观测静电放电等瞬态干扰? 答:因为频谱分析仪是一种窄带扫频接收机,它在某一时刻仅接收某个频率范围内的能量。而静电放电等瞬态干扰是一种脉冲干扰,其频谱范围很宽,但时间很短,这样频谱分析仪在瞬态干扰发生时观察到的仅是其总能量的一小部分,不能反映实际的干扰情况。 5. 在现场进行电磁干扰问题诊断时,往往需要使用近场探头和频谱分析仪,怎样用同轴电缆制作一个简易的近场探头? 答:将同轴电缆的外层(屏蔽层)剥开,使芯线暴露出来,将芯线绕成一个直径1~2厘米小环(1~3匝),焊接在外层上。 6. 一台设备,原来的电磁辐射发射强度是300mV/m,加上屏蔽箱后,辐射发射降为3mV/m,这个机箱的屏蔽效能是多少dB? 答:这个机箱的屏蔽效能应为40dB。 7. 设计屏蔽机箱时