NLP任务中的文本预处理步骤、工具和示例
数据是新的石油,文本是我们需要更深入钻探的油井。 文本数据无处不在, 在实际使用之前,我们必须对其进行预处理,以使其适合我们的需求。对于数据也是如此,我们必须清理和预处理数据以符合我们的目的。这篇文章将包括一些简单的方法来清洗和预处理文本数据以进行文本分析任务。 我们将在Covid-19 Twitter数据集上对该方法进行建模。这种方法有3个主要组成部分: 首先,我们要清理和过滤所有非英语的推文/文本,因为我们希望数据保持一致。 其次,我们为复杂的文本数据创建一个简化的版本。 最后,我们将文本向量化并保存其嵌入以供将来分析。 第1部分:清理和过滤文本 首先,为了简化文本,我们要将文本标准化为仅为英文字符。此函数将删除所有非英语字符。 def clean_non_english(txt): txt = re.sub(r'\W+', ' ', txt) txt = txt.lower() txt = txt.replace("[^a-zA-Z]", " ") word_tokens = word_tokenize(txt) filtered_word = [w for w in word_tokens if all(ord(c) < 128 for c in w)] filtered_word = [w + " " for w in filtered_word] return ""