geopy

NLP任务中的文本预处理步骤、工具和示例

佐手、 提交于 2021-02-12 19:34:34
数据是新的石油,文本是我们需要更深入钻探的油井。 文本数据无处不在, 在实际使用之前,我们必须对其进行预处理,以使其适合我们的需求。对于数据也是如此,我们必须清理和预处理数据以符合我们的目的。这篇文章将包括一些简单的方法来清洗和预处理文本数据以进行文本分析任务。 我们将在Covid-19 Twitter数据集上对该方法进行建模。这种方法有3个主要组成部分: 首先,我们要清理和过滤所有非英语的推文/文本,因为我们希望数据保持一致。 其次,我们为复杂的文本数据创建一个简化的版本。 最后,我们将文本向量化并保存其嵌入以供将来分析。 第1部分:清理和过滤文本 首先,为了简化文本,我们要将文本标准化为仅为英文字符。此函数将删除所有非英语字符。 def clean_non_english(txt): txt = re.sub(r'\W+', ' ', txt) txt = txt.lower() txt = txt.replace("[^a-zA-Z]", " ") word_tokens = word_tokenize(txt) filtered_word = [w for w in word_tokens if all(ord(c) < 128 for c in w)] filtered_word = [w + " " for w in filtered_word] return ""

How to use geopy to obtain the zip code from coordinates?

我的梦境 提交于 2021-02-08 09:47:31
问题 So below is the code I have been using. I'm a bit of a newb. I've been testing with just the head of the data because of the quota for using the API. Below is a snapshot of the dataframe: latitude longitude 0 -73.99107 40.730054 1 -74.000193 40.718803 2 -73.983849 40.761728 3 -73.97499915 40.68086214 4 -73.89488591 40.66471445 This is where I am getting tripped up. train['latlng'] = train.apply(lambda row: '{},{}'.format(row['latitude'], row['longitude']), axis=1) train['geocode_data'] =

Nominatim Returns a Configuration Error after Assigning a Variable to it

家住魔仙堡 提交于 2021-02-08 08:23:19
问题 I recently downloaded geopy and tested it out on Jupyter's notebook with the code below. import geopy from geopy.geocoders import Nominatim nom=Nominatim(scheme="http") After running this I received the following error: --------------------------------------------------------------------------- ConfigurationError Traceback (most recent call last) <ipython-input-2-899501bc88f0> in <module> ----> 1 nom=Nominatim(scheme="http") c:\users\****\appdata\local\programs\python\python38-32\lib\site-

Conversion of miles to latitude and longitude degrees using geopy

China☆狼群 提交于 2021-02-08 06:59:27
问题 Background I want to add a model manager function that filters a queryset based on the proximity to coordinates. I found this blog posting with code that is doing precisely what I want. Code The snippet below seems to make use of geopy functions that have since been removed. It coarsely narrows down the queryset by limiting the range of latitude and longitude. # Prune down the set of all locations to something we can quickly check precisely rough_distance = geopy.distance.arc_degrees

Timeout error in Python geopy geocoder

匆匆过客 提交于 2021-02-07 22:02:03
问题 I am a relatively new Python user and am attempting to use a function to return the latitude and longitude for a city and country using the "geopy" module. I have had errors because my city was misspelled which I have managed to catch. The trouble I am now having is that I am encountering a timeout error. I have read this question Geopy: catch timeout error and adjusted my timeout parameter accordingly. However it now runs for varying lengths of time before I get a timeout error. I have tried

Timeout error in Python geopy geocoder

微笑、不失礼 提交于 2021-02-07 22:01:36
问题 I am a relatively new Python user and am attempting to use a function to return the latitude and longitude for a city and country using the "geopy" module. I have had errors because my city was misspelled which I have managed to catch. The trouble I am now having is that I am encountering a timeout error. I have read this question Geopy: catch timeout error and adjusted my timeout parameter accordingly. However it now runs for varying lengths of time before I get a timeout error. I have tried

Geopy too slow - timeout all the time

拈花ヽ惹草 提交于 2021-01-28 08:07:33
问题 I am using geopy to get latitude - longitude pairs for city names. For single queries, this works fine. What I try to do now is iterating through a big list of city names (46.000) and getting geocodes for each city. Afterwards, I run them through a check loop which sorts the city (if it is in the US) in the correct state. My problem is, that I get "GeocoderTimedOut('Service timed out')" all the time, everything is pretty slow and I'm not sure if that is my fault or just geopys nature. Here is

基于Dijkstra算法的武汉地铁路径规划!(附下载)

馋奶兔 提交于 2020-12-22 10:25:23
来源:Datawhale 本文 约3300字 ,建议阅读 10 分钟 本文为你详解路径规划项目,附源码链接。 前言 最近爬取了武汉地铁线路的信息,通过调用高德地图的api 获得各个站点的进度和纬度信息,使用Dijkstra算法对路径进行规划。 公众号(DatapiTHU)后台回复 “20201218” 获取项目源码下载 一、数据爬取 首先是需要获得武汉各个地铁的地铁站信息,通过爬虫爬取武汉各个地铁站点的信息,并存储到xlsx文件中。 武汉地铁线路图,2021最新武汉地铁线路图,武汉地铁地图-武汉本地宝wh.bendibao.com 方法:requests、BeautifulSoup、pandas import requests from bs4 import BeautifulSoup import pandas as pd def spyder(): #获得武汉的地铁信息 url='http://wh.bendibao.com/ditie/linemap.shtml' user_agent='Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50' headers = {'User-Agent'

NLP任务中的文本预处理步骤、工具和示例

南楼画角 提交于 2020-10-29 17:32:18
作者 | Viet Hoang Tran Duong 来源 | DeepHub IMBA 头图 | CSDN付费下载于视觉中国 数据是新的石油,文本是我们需要更深入钻探的油井。文本数据无处不在,在实际使用之前,我们必须对其进行预处理,以使其适合我们的需求。对于数据也是如此,我们必须清理和预处理数据以符合我们的目的。这篇文章将包括一些简单的方法来清洗和预处理文本数据以进行文本分析任务。 我们将在Covid-19 Twitter数据集上对该方法进行建模。这种方法有3个主要组成部分: 首先,我们要清理和过滤所有非英语的推文/文本,因为我们希望数据保持一致。 其次,我们为复杂的文本数据创建一个简化的版本。 最后,我们将文本向量化并保存其嵌入以供将来分析。 清理和过滤文本 首先,为了简化文本,我们要将文本标准化为仅为英文字符。此函数将删除所有非英语字符。 def clean_non_english(txt): txt = re.sub(r'\W+', ' ', txt) txt = txt.lower() txt = txt.replace("[^a-zA-Z]", " ") word_tokens = word_tokenize(txt) filtered_word = [w for w in word_tokens if all(ord(c) < 128 for c in w)]