[计算机视觉论文速递] 2018-04-19
通知:这篇文章有8篇论文速递信息,涉及目标识别、SLAM、3D Model、密集点集配准、立体匹配等方向(含6篇CVPR论文) 目标识别 [1]《Hierarchical Novelty Detection for Visual Object Recognition》 CVPR 2018 Abstract:深度神经网络在具有预定义类别的大规模视觉对象识别任务中取得了令人瞩目的成功。然而,在训练期间识别新类(即未被看见的对象)仍然具有挑战性。在文献中已经讨论了检测这种新类的问题,但是之前大多数工作都是提供简单的二元或回归决策,例如,输出将是“已知的”,“新颖的”或相应的置信区间。在本文中,我们研究更多的基于分层分类框架的信息新颖性检测方案。对于一个新类的对象,我们的目标是在已知类的分层分类中找到它最接近的超类。为此,我们提出了两种不同的方法,称为自顶向下和扁平化方法,以及它们的组合。我们方法的基本组成部分是置信度校正分类器,数据重新标记以及在分层分类法下对新类进行建模的“一次退出”策略。此外,我们的方法可以生成分层嵌入,结合其他常用的语义嵌入,可以提高广义零点学习性能。 arXiv: https://arxiv.org/abs/1804.00722 SLAM [2]《CodeSLAM - Learning a Compact, Optimisable Representation