AirVis: Visual Analytics of Air Pollution Propagation
论文传送门 视频 作者 浙江大学: Zikun Deng Di Weng Jiahui Chen Ren Liu Zhibin Wang Yingcai Wu 京东智慧城市研究院 Jie Bao Yu Zheng 摘要 空气污染已经成为世界上许多城市的一个严重的公共健康问题。为了找出空气污染的原因,必须在大的空间尺度上研究空气污染物的传播过程。然而,复杂和动态的风场导致污染物输送的高度不确定性。如果没有领域知识的整合,最先进的数据挖掘方法不能完全支持跨多个地区的这种不确定时空传播过程的广泛分析。这些自动化方法的局限性促使我们设计和开发 AirVis,这是一种新颖的可视分析系统,它可以帮助领域专家基于图形可视化有效地捕捉和解释空气污染的不确定传播模式。设计这样的系统提出了三个挑战:a)传播模式的提取;b)模式表示的可伸缩性;和 c)传播过程的分析。为了应对这些挑战,我们开发了一个新的模式挖掘框架来模拟污染物迁移,并从大规模大气数据中有效地提取频繁传播模式。此外,我们基于最小描述长度原则对提取的模式进行分层组织,并允许专家用户基于模式拓扑有效地探索和分析这些模式。我们通过使用真实数据集和领域专家的积极反馈进行的两个案例研究证明了我们方法的有效性。 Introduction 空气污染成为一个严重的公共问题 来源: Vehicle emission Incineration Factory