How would one prove ((p ⇒ q) ⇒ p) ⇒ p, using the Fitch system
问题 FYI, the logic program I use cannot do contradiction introductions. This point is most likely irrelevant, for I highly doubt I would need to use any form of contradiction for this proof. In my attempt to solve this, I started off with assuming (p ⇒ q) ⇒ p) Is this correct? If so, what next? Forgive me if the solution seems so obvious. 回答1: (p ⇒ q) ⇒ p ((p ⇒ q) ⇒ p) ∨ (p ⇒ p) ; (X ⇒ X) and Or introduction ((p ⇒ q) ∨ p) ⇒ p ; (X ⇒ Z) ∨ (Y ⇒ Z) |- (X ∨ Y ⇒ Z) ((¬p ∨ q) ∨ p) ⇒ p ; (p ⇒ q) ⇔ (¬p ∨