分类数据

【转】左右值无限分类实现算法

一笑奈何 提交于 2019-12-07 10:21:28
一、引言 产品分类,多级的树状结构的论坛,邮件列表等许多地方我们都会遇到这样的问题:如何存储多级结构的数据?在PHP的应用中,提供后台数据存储的通常是关系型数据库,它能够保存大量的数据,提供高效的数据检索和更新服务。然而关系型数据的基本形式是纵横交错的表,是一个平面的结构,如果要将多级树状结构存储在关系型数据库里就需要进行合理的翻译工作。接下来我会将自己的所见所闻和一些实用的经验和大家探讨一下: 层级结构的数据保存在平面的数据库中基本上有两种常用 设计 方法: * 毗邻目录模式(adjacency list model) * 预排序遍历树算法(modified preorder tree traversal algorithm) 我不是计算机专业的,也没有学过什么数据结构的东西,所以这两个名字都是我自己按照字面的意思翻的,如果说错了还请多多指教。这两个东西听着好像很吓人,其实非常容易理解。 二、模型 这里我用一个简单食品目录作为我们的示例数据。 我们的数据结构是这样的,以下是代码: Food | |---Fruit | | | |---Red | | | | | |--Cherry | | | +---Yellow | | | +--Banana | +---Meat |--Beef +--Pork 复制代码 为了照顾那些英文一塌糊涂的PHP爱好者 Food : 食物 Fruit

PHP 核心知识要点

蹲街弑〆低调 提交于 2019-12-06 21:37:48
Php:脚本语言,网站建设,服务器端运行 PHP定义:一种服务器端的 HTML 脚本/编程语言,是一种简单的、面向对象的、解释型的、健壮的、安全的、性能非常之高的、独立于架构的、可移植的、动态的脚本语言。是一种广泛用于 Open Source(开放源代码)的尤其适合 Web 开发并可以嵌入 HTML 的多用途脚本语言。它的语法接近 C,Java 和 Perl,而且容易学习。该语言让 Web 开发人员快速的书写动态生成的网页。 PHP简介:Rasmus Lerdorf发展历程(1994:1.0个人perl,1996:2.0C底层,1998:3.0zendEngine,2000:4.0session+输出缓冲等,2004:5.0zend引擎2代),平台支持(window,Linux,UNIX),数据库支持(Sqlserver,mysql,Oracle,Access),开发环境(Apache2,mysql,php) 服务器:软件,常见服务(HTTP,FTP,MySQL,telnet等) 软件结构:c\s,b\s,PHP地位 Web访问:IP,域名,hosts,域名服务器,网站,web访问 原数据保存:php文件,数据库文件 搭建web服务器:   Wamp,lamp,Apache安装(www.apache.org)   MySQL安装   PHP安装(无中文路径,CMD执行php.exe

2 监督学习与非监督学习

不想你离开。 提交于 2019-12-06 16:55:24
2 机器学习算法 2.1 监督学习 首先给出一个例子来解释什么是监督学习,后面将给出更加正式的定义。假设你想预测房价(无比需要啊。。。。),某个学生从某地收集了数据集,其中一个数据集是这样的。横坐标是房子的面积(平方英尺为单位),纵坐标是房子的价格(单位千美元)。 假设你的朋友有个750平方米的房子,想要知道能够卖多少钱。学习算法怎么可以帮助你呢?一种方法是学习算法可以绘制一条直线,使这条直线尽可能的匹配到所有数据,从下图可以看出,可能能够买到15万刀(一平米两千刀,看来人家的房价也不低啊。。。。)。 直线可能并不是最好的方法,可能会有更好的,在房价预测的例子中,可能一个二元函数能够更好的匹配所有数据,即二次多项式更加符合数据集,如果你这样做,预测结果就应该是20万刀(我去,还让人活吗???)。后面会介绍怎么决定是选择线性函数还是二次函数来拟合数据。 监督学习意指给一个算法一个数据集,在这个数据集中正确的答案已经存在了(supervised learning refers to the fact that we gave the algorithm a data set in which the "right answers" were given.)。比如给定房价数据集,对于里面的每一个例子,算法都知道正确的房价,即这个房子实际卖出的价格,算法的结果就是计算出更多的正确的价格

什么是监督学习?如何理解分类和回归?

杀马特。学长 韩版系。学妹 提交于 2019-12-06 16:44:12
本文首发在 easyAI —— 人工智能知识库 什么是监督学习? 监督学习是机器学习中的一种 训练方式/学习方式 : 监督学习需要有明确的目标,很清楚自己想要什么结果 。比如:按照“既定规则”来分类、预测某个具体的值… 监督并不是指人站在机器旁边看机器做的对不对,而是下面的流程: 选择一个适合目标任务的数学模型 先把一部分已知的“问题和答案”(训练集)给机器去学习 机器总结出了自己的“方法论” 人类把"新的问题"(测试集)给机器,让他去解答 上面提到的问题和答案只是一个比喻,假如我们想要完成文章分类的任务,则是下面的方式: 选择一个合适的数学模型 把一堆已经分好类的文章和他们的分类给机器 机器学会了分类的“方法论” 机器学会后,再丢给他一些新的文章(不带分类),让机器预测这些文章的分类 监督学习的2个任务:回归、分类 监督学习有2个主要的任务: 回归 分类 **回归:预测连续的、具体的数值。**比如:支付宝里的芝麻信用分数(下面有详细讲解) **分类:对各种事物分门别类,用于离散型( 什么是离散? )预测。**比如: 「回归」案例:芝麻信用分是怎么来的? 下面要说的是个人信用评估方法—— FICO 。 他跟芝麻信用类似,用来评估个人的信用状况。FICO 评分系统得出的信用分数范围在300~850分之间,分数越高,说明信用风险越小。 下面我们来模拟一下 FICO 的发明过程

监督学习最常见的四种算法

北战南征 提交于 2019-12-06 16:37:53
在 机器学习 中,无监督学习(Unsupervised learning)就是聚类,事先不知道样本的类别,通过某种办法,把相似的样本放在一起归位一类;而监督型学习(Supervised learning)就是有训练样本,带有属性标签,也可以理解成样本有输入有输出。 所有的回归 算法 和分类算法都属于监督学习。回归(Regression)和分类(Classification)的算法区别在于输出变量的类型,定量输出称为回归,或者说是连续变量预测;定性输出称为分类,或者说是离散变量预测。 以下是一些常用的监督型学习方法。 一. K-近邻算法(k-Nearest Neighbors,KNN) K-近邻是一种分类算法,其思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。K通常是不大于20的整数。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 如上图,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形类。 算法的步骤为: (1)计算 测试 数据与各个训练数据之间的距离; (2

机器学习两种方法——监督学习和无监督学习(通俗理解)

微笑、不失礼 提交于 2019-12-06 16:36:31
前言 机器学习分为:监督学习,无监督学习,半监督学习(也可以用hinton所说的强化学习)等。 在这里,主要理解一下监督学习和无监督学习。 监督学习(supervised learning) 从给定的训练数据集中学习出一个函数(模型参数),当新的数据到来时,可以根据这个函数预测结果。监督学习的训练集要求包括输入输出,也可以说是特征和目标。训练集中的目标是由人标注的。监督学习就是最常见的分类( 注意和聚类区分 )问题,通过已有的训练样本(即已知数据及其对应的输出)去训练得到一个最优模型(这个模型属于某个函数的集合,最优表示某个评价准则下是最佳的),再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的。也就具有了对未知数据分类的能力。监督学习的目标往往是让计算机去学习我们已经创建好的分类系统(模型)。 监督学习是训练神经网络和决策树的常见技术。这两种技术高度依赖事先确定的分类系统给出的信息,对于神经网络,分类系统利用信息判断网络的错误,然后不断调整网络参数。对于决策树,分类系统用它来判断哪些属性提供了最多的信息。 常见的有监督学习算法:回归分析和统计分类。最典型的算法是KNN和SVM。 有监督学习最常见的就是:regression&classification Regression:Y是实数vector。回归问题,就是拟合(x,y)的一条曲线,使得价值函数

机器学习之监督学习supervised learning

前提是你 提交于 2019-12-06 16:36:06
分类与回归 监督学习的问题主要有两种,分别是分类classification和回归regression。 分类: 分类问题的目的是预测类别标签class label,这些标签来自预定义的可选列表。 回归: 回归任务的目的是预测一个连续值,也叫作浮点数floating-point number,即预测值不是一个类别而是一个数字值。打个比方,假如要根据一个人的年龄学历等feature来预测这个人的收入,那么预测值为一个金额,可以在给定范围内任意取值。 区分分类与回归: 最好的办法就是看输出是否具有某种连续性,如果在可能的结果之间具有连续性,那么它就是一个回归问题。 泛化 generalize: 如果一个模型能对没有见过的数据做出准确的预测,那么就表明这个模型能从训练集generalize到测试集。 过拟合 overfitting 欠拟合 underfitting: 如果我们总想找到最简单的模型,构建与一个对于现有信息量过于复杂的模型,即在拟合模型的时候过分关注训练集的细节,得到了一个与训练集上表现很好但是不能泛化到新数据上的模型,那么就是overfitting过拟合。 反之 ,如果模型过于简单,无法抓住数据的全部内容以及数据中的变化,甚至在训练集上表现就很差,那么就是underfitting欠拟合。 所以 ,在二者之间存在一个最佳位置,找到这个位置就是我们最想要的模型。 监督学习算法

CDA 数据分析师 level1 part 5

断了今生、忘了曾经 提交于 2019-12-06 16:30:35
数据分析师-机器学习 数据分析师-机器学习 机器学习概念 机器学习概念 ●机器学习研究如何让计算机不需要明确的程序也能具备学习能力。( Arthur Samuel,1959) ●一个计算机程序在完成了任务T之后,获得经验E,其表现效果为P,如果任务T的性能表现,也就是用以衡量的P,随着E的增加而增加,可以称其为学习。(Tom Mitchell11977) 虽然机器学习的研究来源于人工智能领域,但是机器学习的方法却应用于数据科学领域,因此我们将机器学习看作是一种数学建模更合适。 机器学习的本质就是借助数学模型理解数据。当我们给模型装上可以适应观测数据的可调参数时,“学习”就开始了;此时的程序被认为具有从数据中“学习”的能力。一旦模型可以拟合旧的观测数据,那么它们就可以预测并解释新的观测数据。 模型构建流程 第一步:获取数据 既然我们机器学习是借助数学模型理解数学,那么最重要的原材料就是数据了。获取数据通常指的是获取原始数据,当然这里可以是一手数据,也可以是二手数据,关键看机器学习的学习任务。 “数据决定机器学习结果的上限,而算法只是尽可能的逼近这个上限”,可见数据在机器学习中的作用。那么一般而言对于数据我们有哪些要求呢? 数据要具有代表性,数据需要包含尽可能多的信息,数据也需要同学习任务有关联性。 对于监督学习中的分类问题,数据偏斜不能过于严重

项目 3: 创建用户分类

白昼怎懂夜的黑 提交于 2019-12-06 15:05:54
欢迎来到机器学习工程师纳米学位的第三个项目!在这个notebook文件中,有些模板代码已经提供给你,但你还需要实现更多的功能来完成这个项目。除非有明确要求,你无须修改任何已给出的代码。以 '练习' 开始的标题表示接下来的代码部分中有你必须要实现的功能。每一部分都会有详细的指导,需要实现的部分也会在注释中以 'TODO' 标出。请仔细阅读所有的提示! 除了实现代码外,你还 必须 回答一些与项目和你的实现有关的问题。每一个需要你回答的问题都会以 '问题 X' 为标题。请仔细阅读每个问题,并且在问题后的 '回答' 文字框中写出完整的答案。我们将根据你对问题的回答和撰写代码所实现的功能来对你提交的项目进行评分。 提示: Code 和 Markdown 区域可通过 Shift + Enter 快捷键运行。此外,Markdown可以通过双击进入编辑模式。 开始 在这个项目中,你将分析一个数据集的内在结构,这个数据集包含很多客户真对不同类型产品的年度采购额(用 金额 表示)。这个项目的任务之一是如何最好地描述一个批发商不同种类顾客之间的差异。这样做将能够使得批发商能够更好的组织他们的物流服务以满足每个客户的需求。 这个项目的数据集能够在 UCI机器学习信息库 中找到.因为这个项目的目的,分析将不会包括'Channel'和'Region'这两个特征——重点集中在6个记录的客户购买的产品类别上。

BAT机器学习面试1000题系列

本小妞迷上赌 提交于 2019-12-06 14:35:20
几点声明: 1、本文的内容全部来源于七月在线发布的BAT机器学习面试1000题系列; 2、文章中带斜体的文字代表是本人自己增加的内容,如有错误还请批评指正; 3、原文中有部分链接已经失效,故而本人重新加上了新的链接,如有不当,还请指正。(也已用斜体标出) 4、部分答案由于完全是摘抄自其它的博客,所以本人就只贴出答案链接,这样既可以节省版面,也可以使排版更加美观。点击对应的问题即可跳转。 最后,此博文的排版已经经过本人整理,公式已用latex语法表示,方便读者阅读。同时链接形式也做了优化,可直接跳转至相应页面,希望能够帮助读者提高阅读体验,文中如果因为本人的整理出现纰漏,还请指出,大家共同进步! 1.请简要介绍下SVM。 SVM,全称是support vector machine,中文名叫支持向量机。SVM是一个面向数据的分类算法,它的目标是为确定一个分类超平面,从而将不同的数据分隔开。 扩展: 支持向量机学习方法包括构建由简至繁的模型:线性可分支持向量机、线性支持向量机及非线性支持向量机。当训练数据线性可分时,通过硬间隔最大化,学习一个线性的分类器,即线性可分支持向量机,又称为硬间隔支持向量机;当训练数据近似线性可分时,通过软间隔最大化,也学习一个线性的分类器,即线性支持向量机,又称为软间隔支持向量机;当训练数据线性不可分时,通过使用核技巧及软间隔最大化,学习非线性支持向量机。