分布式缓存

#研发解决方案#discache-分布式缓存查询与管理系统

戏子无情 提交于 2020-02-28 23:06:07
郑昀 基于马海元和闫小波的文档 关键词: memcached 、redis、分布式缓存、控制台、反序列化、Java 本文档适用人员:研发和运维员工 提纲: 如何查看缓存里的序列化数据? 批量删除来一个 监控每个缓存端口的访问情况是很有必要的 discache 解决了这些问题 电商系统的分布式缓存一般是 redis 和 memcached 集群,每一个节点上会起很多实例,因为一个业务类型对应于一个端口,拆分得很清楚。既然节点很多,端口很多,业务也在变化,随时都有变动,如何管理呢?当然,最迫切的需求是下面这个,不解决的话就会很麻烦。 0x01.如何查看缓存里的序列化数据? Java 工程通常 把类实例对象序列化后存储在缓存里 。其次,不同端口存的类对象还不一样。最后,类对象还有版本之分,你手头不见得有正确的线上版本 class 文件来反序列化。 总之,当你想看看键值里存的是什么内容时,会非常麻烦,所以我们迫切需要一个系统。 0x02.批量删除来一个 有时候线上缓存数据想按某个规则删掉一批,没有一个趁手的工具的话,那遇到急茬儿事还真是手忙脚乱,尤其是有时候上线预热数据预热错了的时候。假如能按照某个通配符规则批量删除,善莫大焉。 0x03.监控每个缓存端口的访问情况是很有必要的 慢日志 : redis 支持各种数据结构,还支持模糊查询,所以容易在线上出现慢查询。因此

服务端高并发分布式架构演进之路

蹲街弑〆低调 提交于 2020-02-27 02:28:17
1. 概述 本文以淘宝作为例子,介绍从一百个到千万级并发情况下服务端的架构的演进过程,同时列举出每个演进阶段会遇到的相关技术,让大家对架构的演进有一个整体的认知,文章最后汇总了一些架构设计的原则。 特别说明:本文以淘宝为例仅仅是为了便于说明演进过程可能遇到的问题,并非是淘宝真正的技术演进路径 2. 基本概念 在介绍架构之前,为了避免部分读者对架构设计中的一些概念不了解,下面对几个最基础的概念进行介绍: 分布式 系统中的多个模块在不同服务器上部署,即可称为分布式系统,如Tomcat和数据库分别部署在不同的服务器上,或两个相同功能的Tomcat分别部署在不同服务器上 高可用 系统中部分节点失效时,其他节点能够接替它继续提供服务,则可认为系统具有高可用性 集群 一个特定领域的软件部署在多台服务器上并作为一个整体提供一类服务,这个整体称为集群。如Zookeeper中的Master和Slave分别部署在多台服务器上,共同组成一个整体提供集中配置服务。在常见的集群中,客户端往往能够连接任意一个节点获得服务,并且当集群中一个节点掉线时,其他节点往往能够自动的接替它继续提供服务,这时候说明集群具有高可用性 负载均衡 请求发送到系统时,通过某些方式把请求均匀分发到多个节点上,使系统中每个节点能够均匀的处理请求负载,则可认为系统是负载均衡的 正向代理和反向代理 系统内部要访问外部网络时

Flink的入门

◇◆丶佛笑我妖孽 提交于 2020-02-22 14:34:13
Apache Flink(下简称Flink)项目是大数据处理领域最近冉冉升起的一颗新星,其不同于其他大数据项目的诸多特性吸引了越来越多人的关注。本文将深入分析Flink的一些关键技术与特性,希望能够帮助读者对Flink有更加深入的了解,对其他大数据系统开发者也能有所裨益。本文假设读者已对MapReduce、Spark及Storm等大数据处理框架有所了解,同时熟悉流处理与批处理的基本概念。 Flink简介 Flink核心是一个流式的数据流执行引擎,其针对数据流的分布式计算提供了数据分布、数据通信以及容错机制等功能。基于流执行引擎,Flink提供了诸多更高抽象层的API以便用户编写分布式任务: DataSet API, 对静态数据进行批处理操作,将静态数据抽象成分布式的数据集,用户可以方便地使用Flink提供的各种操作符对分布式数据集进行处理,支持Java、Scala和Python。 DataStream API,对数据流进行流处理操作,将流式的数据抽象成分布式的数据流,用户可以方便地对分布式数据流进行各种操作,支持Java和Scala。 Table API,对结构化数据进行查询操作,将结构化数据抽象成关系表,并通过类SQL的DSL对关系表进行各种查询操作,支持Java和Scala。 此外,Flink还针对特定的应用领域提供了领域库,例如: Flink ML,Flink的机器学习库

构建高并发高可用的电商平台架构实践

為{幸葍}努か 提交于 2020-02-17 07:25:52
一、 设计理念 1. 空间换时间 1) 多级缓存,静态化 客户端页面缓存(http header中包含Expires/Cache of Control,last modified(304,server不返回body,客户端可以继续用cache,减少流量),ETag) 反向代理缓存 应用端的缓存(memcache) 内存数据库 Buffer、cache机制(数据库,中间件等) 2) 索引 哈希、B树、倒排、bitmap 哈希索引适合综合数组的寻址和链表的插入特性,可以实现数据的快速存取。 B树索引适合于查询为主导的场景,避免多次的IO,提高查询的效率。 倒排索引实现单词到文档映射关系的最佳实现方式和最有效的索引结构,广泛用在搜索领域。 Bitmap是一种非常简洁快速的数据结构,他能同时使存储空间和速度最优化(而不必空间换时间),适合于海量数据的的计算场景。 2. 并行与分布式计算 1) 任务切分、分而治之(MR) 在大规模的数据中,数据存在一定的局部性的特征,利用局部性的原理将海量数据计算的问题分而治之。 MR模型是无共享的架构,数据集分布至各个节点。处理时,每个节点就近读取本地存储的数据处理(map),将处理后的数据进行合并(combine)、排序(shuffle and sort)后再分发(至reduce节点),避免了大量数据的传输,提高了处理效率。 2) 多进程、多线程并行执行

构建高并发高可用的电商平台架构实践

我们两清 提交于 2020-02-17 07:05:25
从各个角度总结了电商平台中的架构实践,由于时间仓促,定了个初稿,待补充完善,欢迎大家一起交流。 转载请声明出处: http://blog.csdn.net/yangbutao/article/details/12242441 作者:杨步涛 关注分布式架构、大数据、搜索、开源技术 QQ:306591368 技术Blog: http://blog.csdn.net/yangbutao 一、 设计理念 1. 空间换时间 1) 多级缓存,静态化 客户端页面缓存(http header中包含Expires/Cache of Control,last modified(304,server不返回body,客户端可以继续用cache,减少流量),ETag) 反向代理缓存 应用端的缓存(memcache) 内存数据库 Buffer、cache机制(数据库,中间件等) 2) 索引 哈希、B树、倒排、bitmap 哈希索引适合综合数组的寻址和链表的插入特性,可以实现数据的快速存取。 B树索引适合于查询为主导的场景,避免多次的IO,提高查询的效率。 倒排索引实现单词到文档映射关系的最佳实现方式和最有效的索引结构,广泛用在搜索领域。 Bitmap是一种非常简洁快速的数据结构,他能同时使存储空间和速度最优化(而不必空间换时间),适合于海量数据的的计算场景。 2. 并行与分布式计算 1) 任务切分、分而治之

构建高并发高可用的电商平台架构实践

时间秒杀一切 提交于 2020-02-17 06:44:57
从各个角度总结了电商平台中的架构实践,由于时间仓促,定了个初稿,待补充完善,欢迎大家一起交流。 转载请声明出处: http://blog.csdn.net/yangbutao/article/details/12242441 作者:杨步涛 关注分布式架构、大数据、搜索、开源技术 QQ:306591368 技术Blog: http://blog.csdn.net/yangbutao 一、 设计理念 1. 空间换时间 1) 多级缓存,静态化 客户端页面缓存(http header中包含Expires/Cache of Control,last modified(304,server不返回body,客户端可以继续用cache,减少流量),ETag) 反向代理缓存 应用端的缓存(memcache) 内存数据库 Buffer、cache机制(数据库,中间件等) 2) 索引 哈希、B树、倒排、bitmap 哈希索引适合综合数组的寻址和链表的插入特性,可以实现数据的快速存取。 B树索引适合于查询为主导的场景,避免多次的IO,提高查询的效率。 倒排索引实现单词到文档映射关系的最佳实现方式和最有效的索引结构,广泛用在搜索领域。 Bitmap是一种非常简洁快速的数据结构,他能同时使存储空间和速度最优化(而不必空间换时间),适合于海量数据的的计算场景。 2. 并行与分布式计算 1) 任务切分、分而治之

分布式缓存系统Memcached简介与实践

拟墨画扇 提交于 2020-02-16 09:02:36
缘起: 在数据驱动的web开发中,经常要重复从数据库中取出相同的数据,这种重复极大的增加了数据库负载。缓存是解决这个问题的好办法。但是ASP.NET中的虽然已经可以实现对页面局部进行缓存,但还是不够灵活。此时Memcached或许是你想要的。 Memcached是什么? Memcached是由Danga Interactive开发的,高性能的,分布式的内存对象缓存系统,用于在动态应用中减少数据库负载,提升访问速度。 Memcached能缓存什么? 通过在内存里维护一个统一的巨大的hash表,Memcached能够用来存储各种格式的数据,包括图像、视频、文件以及数据库检索的结果等。 Memcached快么? 非常快。Memcached使用了libevent(如果可以的话,在linux下使用epoll)来均衡任何数量的打开链接,使用非阻塞的网络I/O,对内部对象实现引用计数(因此,针对多样的客户端,对象可以处在多样的状态), 使用自己的页块分配器和哈希表, 因此虚拟内存不会产生碎片并且虚拟内存分配的时间复杂度可以保证为O(1).。 Danga Interactive为提升Danga Interactive的速度研发了Memcached。目前,LiveJournal.com每天已经在向一百万用户提供多达两千万次的页面访问。而这些,是由一个由web服务器和数据库服务器组成的集群完成的

分布式缓存系统Memcached简介与实践 基于 .NET

爱⌒轻易说出口 提交于 2020-02-16 09:01:52
缘起: 在数据驱动的web开发中,经常要重复从数据库中取出相同的数据,这种重复极大的增加了数据库负载。缓存是解决这个问题的好办法。但是ASP.NET中的虽然已经可以实现对页面局部进行缓存,但还是不够灵活。此时Memcached或许是你想要的。 Memcached是什么? Memcached是由Danga Interactive开发的,高性能的,分布式的内存对象缓存系统,用于在动态应用中减少数据库负载,提升访问速度。 Memcached能缓存什么? 通过在内存里维护一个统一的巨大的hash表,Memcached能够用来存储各种格式的数据,包括图像、视频、文件以及数据库检索的结果等。 Memcached快么? 非常快。Memcached使用了libevent(如果可以的话,在linux下使用epoll)来均衡任何数量的打开链接,使用非阻塞的网络I/O,对内部对象实现引用计数(因此,针对多样的客户端,对象可以处在多样的状态), 使用自己的页块分配器和哈希表, 因此虚拟内存不会产生碎片并且虚拟内存分配的时间复杂度可以保证为O(1).。 Danga Interactive为提升Danga Interactive的速度研发了Memcached。目前,LiveJournal.com每天已经在向一百万用户提供多达两千万次的页面访问。而这些,是由一个由web服务器和数据库服务器组成的集群完成的

分布式锁

懵懂的女人 提交于 2020-02-10 18:29:04
https://www.cnblogs.com/austinspark-jessylu/p/8043726.html 分布式锁的几种实现方式 目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题。分布式的CAP理论告诉我们“任何一个分布式系统都无法同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance),最多只能同时满足两项。”所以,很多系统在设计之初就要对这三者做出取舍。在互联网领域的绝大多数的场景中,都需要牺牲强一致性来换取系统的高可用性,系统往往只需要保证“最终一致性”,只要这个最终时间是在用户可以接受的范围内即可。 在很多场景中,我们为了保证数据的最终一致性,需要很多的技术方案来支持,比如分布式事务、分布式锁等。有的时候,我们需要保证一个方法在同一时间内只能被同一个线程执行。在单机环境中,Java中其实提供了很多并发处理相关的API,但是这些API在分布式场景中就无能为力了。也就是说单纯的Java Api并不能提供分布式锁的能力。所以针对分布式锁的实现目前有多种方案。 针对分布式锁的实现,目前比较常用的有以下几种方案: 基于数据库实现分布式锁 基于缓存(redis,memcached,tair)实现分布式锁 基于Zookeeper实现分布式锁

《大型网站技术架构:核心原理与案例分析》笔记

情到浓时终转凉″ 提交于 2020-02-10 02:59:33
目录 · 大型网站软件系统的特点 · 大型网站架构演化发展历程 · 初始阶段的网站架构 · 需求/解决问题 · 架构 · 应用服务和数据服务分离 · 需求/解决问题 · 架构 · 使用缓存改善网站性能 · 需求/解决问题 · 架构 · 使用应用服务器集群改善网站的并发处理能力 · 需求/解决问题 · 架构 · 数据库读写分离 · 需求/解决问题 · 架构 · 使用反向代理和CDN加速网站响应 · 需求/解决问题 · 架构 · 使用分布式文件系统和分布式数据库系统 · 需求/解决问题 · 架构 · 使用NoSQL和搜索引擎 · 需求/解决问题 · 架构 · 业务拆分 · 需求/解决问题 · 架构 · 分布式服务 · 需求/解决问题 · 架构 · 大型网站架构演化心得 · 大型网站架构模式 · 综述 · 分层 · 概念 · 目的 · 举例 · 分割 · 概念 · 目的 · 举例 · 分布式 · 概念 · 目的 · 缺点 · 举例 · 集群 · 概念 · 目的 · 缓存 · 概念 · 目的 · 举例 · 异步 · 概念 · 目的 · 冗余 · 概念 · 目的 · 举例 · 自动化 · 目的 · 举例 · 安全 · 举例 · 大型网站核心架构要素 · 性能 · 网站性能测试 · 不同视角下的网站性能 · 性能测试指标 · 性能测试方法 · 性能测试报告 · Web前端性能优化 ·