Feather

Convert Pandas DataFrame to & from In-Memory Feather

家住魔仙堡 提交于 2020-01-11 09:59:12
问题 Using the IO tools in pandas it is possible to convert a DataFrame to an in-memory feather buffer: import pandas as pd from io import BytesIO df = pd.DataFrame({'a': [1,2], 'b': [3.0,4.0]}) buf = BytesIO() df.to_feather(buf) However, using the same buffer to convert back to a DataFrame pd.read_feather(buf) Results in an error: ArrowInvalid: Not a feather file How can a DataFrame be convert to an in-memory feather representation and, correspondingly, back to a DataFrame? Thank you in advance

单元测试C代码[关闭]

十年热恋 提交于 2019-12-18 13:45:22
【推荐】2019 Java 开发者跳槽指南.pdf(吐血整理) >>> 今年夏天,我用直接C编写了一个嵌入式系统。这是我工作的公司接管的现有项目。 我已经习惯于使用JUnit在Java中编写单元测试,但是对于为现有代码(需要重构)编写单元测试的最佳方法以及添加到系统中的新代码感到茫然。 是否有任何项目使单元测试普通C代码与使用JUnit进行单元测试Java代码一样简单? 任何专门针对嵌入式开发(交叉编译到arm-linux平台)的见解都将非常感激。 #1楼 我个人喜欢 Google Test框架 。 测试C代码的真正困难在于打破了对外部模块的依赖性,因此您可以将代码单独隔离。 当您尝试围绕遗留代码进行测试时,这可能会特别成问题。 在这种情况下,我经常发现自己使用链接器在测试中使用存根函数。 这是人们在谈论“ 接缝 ”时所指的。 在C中,您唯一的选择就是使用预处理器或链接器来模拟您的依赖项。 我的一个C项目中的典型测试套件可能如下所示: #include "myimplementationfile.c" #include <gtest/gtest.h> // Mock out external dependency on mylogger.o void Logger_log(...){} TEST(FactorialTest, Zero) { EXPECT_EQ(1,

ModuleNotFoundError: No module named 'feather.compat'

谁说我不能喝 提交于 2019-12-11 23:27:22
问题 I installed feather using conda install feather-format -c conda-forge and I believe that it was successfully installed but when I try to run a program with from feather.compat import pdapi I get an error saying that there is no module named 'feather.compat'. How do I fix this? 来源: https://stackoverflow.com/questions/50845316/modulenotfounderror-no-module-named-feather-compat

What are the differences between feather and parquet?

喜夏-厌秋 提交于 2019-11-28 04:29:59
Both are columnar (disk-)storage formats for use in data analysis systems. Both are integrated within Apache Arrow ( pyarrow package for python) and are designed to correspond with Arrow as a columnar in-memory analytics layer. How do both formats differ? Should you always prefer feather when working with pandas when possible? What are the use cases where feather is more suitable than parquet and the other way round? Appendix I found some hints here https://github.com/wesm/feather/issues/188 , but given the young age of this project, it's possibly a bit out of date. Not a serious speed test

What are the differences between feather and parquet?

為{幸葍}努か 提交于 2019-11-27 00:06:00
问题 Both are columnar (disk-)storage formats for use in data analysis systems. Both are integrated within Apache Arrow (pyarrow package for python) and are designed to correspond with Arrow as a columnar in-memory analytics layer. How do both formats differ? Should you always prefer feather when working with pandas when possible? What are the use cases where feather is more suitable than parquet and the other way round? Appendix I found some hints here https://github.com/wesm/feather/issues/188,

NanoVG 优化笔记:性能提高5倍的秘密

旧巷老猫 提交于 2019-11-25 17:01:56
NanoVG 优化笔记 nanovg 正如其名称所示的那样,是一个非常小巧的矢量绘图函数库。相比cairo和skia的数十万行代码,nanovg不足5000行的C语言代码,称为nano也是名副其实了。nanovg的设计、接口和代码质量都堪称典范,唯一美中不足的就是性能不太理想。特别是在Android的低端机型和大屏幕的机型上,一个简单的界面每秒只能画十几帧。最近我把 AWTK 移植到Android上时,就碰到了这个尴尬的问题。 经过优化之后, AWTK 在低端机型上,整体渲染性能有了3到5倍的提升。这里做个笔记,供有需要的朋友参考。 nanovg的性能瓶颈在于片段着色器(fragment shader),片段着色器可以认为是为GPU提供的一个回调函数,该回调函数在处理每个像素时被调用,在每一帧绘制时都会执行数百万次,可见该函数的对性能的影响是很大的。 我们先看看nanovg的片段着色器(fragment shader)代码: static const char* fillFragShader = "#ifdef GL_ES\n" "#if defined(GL_FRAGMENT_PRECISION_HIGH) || defined(NANOVG_GL3)\n" " precision highp float;\n" "#else\n" " precision mediump