泛音

小波变换网文精粹:小波:看森林,也看树木(二)

孤街浪徒 提交于 2019-12-05 19:27:46
英文原名:Wavelets: Seeing the forest and the trees 转自:http://yswhu.bokee.com/viewdiary.10391865.html 二、改变现实(Transforming Reality) 小波分析允许研究者们去隔离和操作隐藏在众多数据之中的模式的特殊类型,我们的眼睛能以同样的方法在森林中挑出树木,或者我们的耳朵能在交响曲中分辨出笛声。理解小波是怎样做这个的一种方法是开始在两种不同声音之间,比如叉子的音调和人声,找出不同点,之后敲打叉子,你会听到一种持续很长时间的纯音调。 在数学理论中,这样的音调称为频率局部化,它由单个无更高频率音调的音符组成。 相比之下, 一个人说的话仅仅持续一秒钟,因此称为时间域局部化,它在频率域里没有局部化是因为说的话不是一个单音调,而是有许多不同频率的音调结合在一起的音调。 在19世纪,数学家认为现实中的叉子音调是完美的,这个理论就是著名的傅立叶分析。Jean Baptiste Joseph Fourier, 一位法国数学家,在1807年声称任何反复波形(或者周期函数),像叉子发出的声波,能被一个无限的各种频率的正弦波和余弦波之合来表示。 傅立叶理论的一个熟悉阐述是在音乐中发生的。当时一位音乐家演奏一个音符,他创造了一个不规则形状的声波,同样形状的波,只要音乐家持续演奏这个音符会不断重复。因此