泛函分析

《应用泛函分析》习题解答

与世无争的帅哥 提交于 2020-01-12 00:11:48
以下所有题目来自科学出版社 许天周的《应用泛函分析》。 1. 设$1 \le p \le q \le +\infty$,证明$l^p \subset l^q$。 证明: $\forall x=(x_1,x_2,\ldots) \in l^p$,$\forall \varepsilon >0$,恒存在自然数N,使得$\sum_{k=N}^{+\infty}{||x_k||}^p<\varepsilon^p$, 那么可得 ${||x_k||}^p<\varepsilon^p \Rightarrow {||x_k||}<\varepsilon,p \ge 1$, 进而 $\sum_{k=N}^{+\infty}{||x_k||}^q \le \varepsilon^{q-p}\sum_{k=N}^{+\infty}{||x_k||}^p< + \infty$ 所以$x \in l^q$ 2. 设[a,b]是有界闭区间,证明$L^2([a,b]) \subset L^1([a,b])$。 证明: $\forall x \in L^2([a,b]) $,有$[\int_a^b|f(t)|^2dt]^{\frac{1}{2}}<+\infty$,那么 $\int_a^b|f|dt \le [\int_a^b|f(t)|^2dt]^{\frac{1}{2}}[\int_a^b 1 dt]^{

【转载】数学体系

谁说胖子不能爱 提交于 2019-12-03 05:16:32
为什么要深入数学的世界 作为计算机的学生,我没有任何企图要成为一个数学家。我学习数学的目的,是要 想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些。说起来,我在刚来这个学校的时候,并没有预料到我将会有一个深入数学的旅 程。我的导师最初希望我去做的题目,是对appearance和motion建立一个unified的model。这个题目在当今Computer Vision中百花齐放的世界中并没有任何特别的地方。事实上,使用各种Graphical Model把各种东西联合在一起framework,在近年的论文中并不少见。 我不否认现在广泛流行的Graphical Model是对复杂现象建模的有力工具,但是,我认为它不是panacea,并不能取代对于所研究的问题的深入的钻研。如果统计学习包治百病,那么很多 “下游”的学科也就没有存在的必要了。事实上,开始的时候,我也是和Vision中很多人一样,想着去做一个Graphical Model——我的导师指出,这样的做法只是重复一些标准的流程,并没有很大的价值。经过很长时间的反复,另外一个路径慢慢被确立下来——我们相信,一个 图像是通过大量“原子”的某种空间分布构成的,原子群的运动形成了动态的可视过程。微观意义下的单个原子运动,和宏观意义下的整体分布的变换存在着深刻的 联系——这需要我们去发掘。 在深入探索这个题目的过程中

泛函四大定理:

荒凉一梦 提交于 2019-11-28 16:29:32
开映射定理和闭图像定理及其应用 - dhchen 的文章 - 知乎 https://zhuanlan.zhihu.com/p/28093420 泛函分析随记(一)Hahn-Banach定理 - 陆艺的文章 - 知乎 https://zhuanlan.zhihu.com/p/53079862 hahn banach延拓定理里的一小步? - 知乎 https://www.zhihu.com/question/263942231 小完结:Hahn-Banach定理及其应用 - dhchen的文章 - 知乎 https://zhuanlan.zhihu.com/p/28496285 泛函分析在经济领域有什么应用吗? - 知乎 https://www.zhihu.com/question/31913447 泛函分析在经济学中的作用有以下几点: 1.价格体系本身是商品空间上的一个线性泛函,利用Hahn-Banach定理我们可以非常容易地证明福利经济学第二定理。 2.要想 严格 地掌握最优控制,需要泛函分析的基础。只是单纯应用的话倒不必要,但是我还是强烈建议经济学的博士生应该掌握Banach空间的微分学,这不光是变分法的问题,而且涉及到经济学很多常用的非线性动力学问题。 对于随机最优控制问题,我们一般有随机Pontryagin最大值原理和Hamilton-Jacobi

[转]在数学的海洋中飘荡

假装没事ソ 提交于 2019-11-27 06:23:16
以下资料来自 Dahua 的博客,非常可惜后来该博客关闭了。 在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进。 为什么要深入数学的世界 作为计算机的学生,我没有任何企图要成为一个数学家。我学习数学的目的,是要想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些。说起来,我在刚来这个学校的时候,并没有预料到我将会有一个深入数学的旅程。我的导师最初希望我去做的题目,是对appearance和motion建立一个unified的model。这个题目在当今Computer Vision中百花齐放的世界中并没有任何特别的地方。事实上,使用各种Graphical Model把各种东西联合在一起framework,在近年的论文中并不少见。 我不否认现在广泛流行的Graphical Model是对复杂现象建模的有力工具,但是,我认为它不是panacea,并不能取代对于所研究的问题的深入的钻研。如果统计学习包治百病,那么很多“下游”的学科也就没有存在的必要了。事实上,开始的时候,我也是和Vision中很多人一样,想着去做一个Graphical Model——我的导师指出,这样的做法只是重复一些标准的流程,并没有很大的价值。经过很长时间的反复,另外一个路径慢慢被确立下来——我们相信,一个图像是通过大量“原子

数学系教材推荐+竞赛教材

孤者浪人 提交于 2019-11-27 04:02:34
解析几何 解析几何有被代数吃掉的趋势,不过就数学系的学生而言,还是应该好好学一下,我大一没有好好学,后来学别的课时总感觉哪里有些不太对劲,后来才发现是自己的数学功底尤其是几何得功底没有打好。 1吴光磊《解析几何简明教程》高等教育出版社 写的简单明了,我基础没有打好,快速翻了一下这本书收获还是不少的。不过打基础的时候还是从下面三本选一本看,把这本当参考书。 2《解析几何》丘维声,北京大学出版社 我大一时的课本 3《解析几何》吕根林,许子道 4《解析几何》尤承业 2,3,4写的大同小异 习题集有巴赫瓦洛夫的《解析几何习题集》不过不是那么容易找的到了 代数 前面说过代数有吃掉几何的倾向,所以有许多与时俱进的《代数与几何》。不过还是建议分开学,一门一门的打好基础。许多所谓的简明教程,还有将代数与解析几何合在一起的课本目前都还不是非常成熟。不建议使用。 1《高等代数》北京大学数学系代数与几何教研室代数小组 目前国内各大学尤其是综合大学数学系广泛采用的代数教材,有着悠久的传统。目前通常使用的是第三版。也是各大学的考研指定用书。这本书更多以教师为主,给了教师以很大的发挥空间,受到教师的普遍欢迎。不过对基础不好的学生在某些地方有一定的难度。讲到了所有应该讲的内容。 2《高等代数》张禾瑞,郝鈵新 被各个师范大学的数学系广泛使用,和1同分天下。张禾瑞已经去世,但书已经出到第五版。 3《线性代数》李烔生

个人简介

柔情痞子 提交于 2019-11-26 21:00:58
基本情况 发表论文 基金项目 基本情况 孙奉龙,男,1988年出生。 汉族,山东省临沂人。2018年6月毕业于曲阜师范大学,获得理学博士学位。 2018年7月起担任曲阜师范大学数学科学学院讲师。 目前工作单位 :曲阜师范大学,职称:讲师 教育经历 : ·2007.9-2011.6,山东师范大学,数学与应用数学专业,本科; ·2011.9-2014.6,曲阜师范大学,应用数学专业,非线性分析及应用方向,硕士,导师:刘立山教授; ·2015.9-2018.6,曲阜师范大学,应用数学专业,非线性分析及应用方向,博士,导师:刘立山教授。 研究领域 :非线性泛函分析 · 偏微分方程 主要研究课题 :非线性发展方程解的整体存在性和有限时间爆破 讲授过的课程 :高等数学 · 泛函分析 E-mail : sunfenglong@qfnu.edu.cn 教学工作 发表论文 2019年 : Lishan Liu, Fenglong Sun#, Yonghong Wu. Blow-up of solutions for a nonlinear Petrovsky type equation with initial data at arbitrary high energy level , Boundary Value Problems, 2019:15, 2019. Fenglong Sun,