六种用于文本分类的开源预训练模型
作者|PURVA HUILGOL 编译|VK 来源|Analytics Vidhya 介绍 我们正站在语言和机器的交汇处,这个话题我很感兴趣。机器能像莎士比亚一样写作吗?机器能提高我自己的写作能力吗?机器人能解释一句讽刺的话吗? 我肯定你以前问过这些问题。自然语言处理(NLP)也致力于回答这些问题,我必须说,在这个领域已经进行了突破性的研究,促使弥合人类和机器之间的鸿沟。 文本分类是自然语言处理的核心思想之一。如果一台机器能够区分名词和动词,或者它能够在客户的评论中检测到客户对产品的满意程度,我们可以将这种理解用于其他高级NLP任务。 这就是我们在文本分类方面看到很多研究的本质。迁移学习的出现可能促进加速研究。我们现在可以使用构建在一个巨大的数据集上的预训练的模型,并进行优化,以在另一个数据集上实现其他任务。 迁移学习和预训练模型有两大优势: 它降低了每次训练一个新的深度学习模型的成本 这些数据集符合行业公认的标准,因此预训练模型已经在质量方面得到了审查 你可以理解为什么经过预训练的模特会大受欢迎。我们已经看到像谷歌的BERT和OpenAI的GPT-2这样的模型真的很厉害。在这里中,我将介绍6种最先进的文本分类预训练模型。 我们将介绍的预训练模型: XLNet ERNIE Text-to-Text Transfer Transformer(T5) BPT NABoE