dijkstra

Dijkstra's Algorithm and Cycles

北城余情 提交于 2020-01-03 10:57:20
问题 It's stated in a book that "Dijkstra's algorithm only works with Directed Acyclic Graphs". It appears the algorithm works for graphs with cycles too as long as there are no negative cycles. Is that correct? Edit 1: The book "Grokking Algorithms" -Aditya Bhargava. Chapter 7. Page 122. 回答1: I'm the author of Grokking Algorithms . Sorry for this error—Dijkstra's algorithm does work on graphs with cycles, as long as it is a positive weight cycle. I have updated the errata page to reflect this

Boost's Dijkstra's Algorithm Tutorial

你。 提交于 2020-01-03 09:02:06
问题 I am having difficulty figuring out how to use Boost's Dijkstra's algorithm. I have gone over their example and documentation, but I still cannot understand how to use it. [Boost's documentation: http://www.boost.org/doc/libs/1_50_0/libs/graph/doc/dijkstra_shortest_paths.html] [Example of Dijkstra: http://www.boost.org/doc/libs/1_36_0/libs/graph/example/dijkstra-example.cpp] Can someone please offer a step by step explanation with code examples to show how to use Boost's Dijkstra's algorithm?

More than 640 000 elements in the array - memory problem [Dijkstra]

丶灬走出姿态 提交于 2020-01-02 10:02:41
问题 I have a script which puts 803*803 (644 809) graph with 1 000 000 value inside each. With ~500*500 everything works fine - but now it crashes - it tries to allocate more than 64MB of memory (which I haven't). What's the solution? Somehow "split" it or...? $result=mysql_query("SELECT * FROM some_table", $connection); confirm($result); while($rows = mysql_fetch_array($result)){ $result2=mysql_query("SELECT * FROM some_table", $connection); confirm($result2); while($rows2 = mysql_fetch_array(

Using Existing Fibonacci Heap Java Implementation with Dijkstra's Shortest Path Java Implementation

青春壹個敷衍的年華 提交于 2020-01-01 07:32:06
问题 Using java programming language, I am trying to implement the most efficient shortest path algorithm on a graph with positive edge cost. To the best of my knowledge, that would be Dijkstra's algorithm with a Fibonacci Heap as the priority Queue. I borrowed the following Fibonacci Heap implementation by Keith Schwarz as stated in the link. http://keithschwarz.com/interesting/code/?dir=fibonacci-heap In my code, I also modified the dijkstra algorithm implementation presented in this question,

CUDA dijkstra's algorithm [closed]

我的未来我决定 提交于 2019-12-30 23:33:31
问题 It's difficult to tell what is being asked here. This question is ambiguous, vague, incomplete, overly broad, or rhetorical and cannot be reasonably answered in its current form. For help clarifying this question so that it can be reopened, visit the help center. Closed 6 years ago . Has anybody implemented a CUDA parallelization version of Dijkstra's Algorithm for a given sparse matrix (cuSPARSE) graph, and for source, and target node, find the minimal K path? I really need it to solve a

Floyd算法,Dijkstra算法

两盒软妹~` 提交于 2019-12-28 11:34:36
转载:https://blog.csdn.net/qq_35644234/article/details/60875818 Floyd算法,实质是三重循环,借道中转 1 //三重循环,用于计算每个点对的最短路径 2 //dis[row][temp] + dis[temp][col] 意思是 v1-v7 = v1-v3-v3-v7 3 int temp = 0; //temp就是借道,实现最外层循环 4 int select = 0; 5 for (temp = 0; temp < this->vexnum; temp++) { 6 for (row = 0; row < this->vexnum; row++) { //中间层循环 7 for (col = 0; col < this->vexnum; col++) { 8 //为了防止溢出,所以需要引入一个select值 9 select = (dis[row][temp] == INT_MAX || dis[temp][col] == INT_MAX) ? INT_MAX : (dis[row][temp] + dis[temp][col]); 10 if (this->dis[row][col] > select) { 11 //更新我们的D矩阵 12 this->dis[row][col] = select; 13 /

Dijkstra和Floyd算法

北战南征 提交于 2019-12-28 11:34:23
两个算法区别不是很大,一个是处理单源最短路径,一个是处理多源最短路径。 先总结下Dijkstra算法。从若干个节点中,找每次最小的提取出来,看经过最小的点的路径到达终点是否比原来小,本质上是贪心的思想。 不多说,放代码。题目来自洛谷P1339 题目描述 The good folks in Texas are having a heatwave this summer. Their Texas Longhorn cows make for good eating but are not so adept at creating creamy delicious dairy products. Farmer John is leading the charge to deliver plenty of ice cold nutritious milk to Texas so the Texans will not suffer the heat too much. FJ has studied the routes that can be used to move milk from Wisconsin to Texas. These routes have a total of T (1 <= T <= 2,500) towns conveniently numbered 1..T

Dijkstra和Floyd算法

陌路散爱 提交于 2019-12-28 11:34:04
#include #include #include #define Infinity 999 //最大值 #define Max_Vertex_Num 20 //顶点数最多为20 #define Len sizeof(struct arcNode) #define gLen sizeof(struct Graph) #define HIT_Ver_Num 11 //共有11个顶点 #define HIT_Arc_Num 18 //共有18个边 //边节点 struct arcNode{ int adjvex; //该边所指向的顶点位置 struct arcNode *nextArc; //指向下一条边的指针 int value; //边的权值 }; //顶点节点 typedef struct verNode{ char *data; //顶点信息 struct arcNode *firstArc; //指向第一条依附该顶点的边 }verNode,adjList[Max_Vertex_Num]; //图的邻接表存储类型 struct Graph{ int g_arcs[Max_Vertex_Num][Max_Vertex_Num]; adjList vertices; //声明一个存储顶点的数组 int vexNum,arcNum; //vexNum 是顶点数,arcNum 是边数

dijkstra算法和Floyd算法

旧时模样 提交于 2019-12-28 11:33:45
dijkstra算法及其优化 dijkstra算法用来求权值均为非负的单源最短路径算法。 用于计算单个节点到其他节点的最短路。 特点: 以起始点为中心向外层层扩展,直到扩展到终点为止。 本质是贪心算法。 算法思路:(一张图就能概括) 图片来源 不做任何处理的时间复杂度为O(n^2); 代码: 1 int dis[N][N]; 2 int cost[N][N]; 3 int used[M]; 4 int low[M]; 5 int st,end; 6 int n; 7 void Dijkstra() 8 { 9 int i,j; 10 int pos; 11 memset(used,0,sizeof(used)); 12 for(i=1;i<=n;++i)//第一次给low,less赋值 13 { 14 low[i]=dis[st][i];//各点到st的距离 15 } 16 used[st]=1; 17 for(i=1;i<n;++i)//找n-1个点 18 { 19 int min = INF; 20 for(j=1;j<=n;++j)//寻找权值最小的(相当于排序) 21 { 22 if(!used[j]&&min>low[j]) 23 { 24 min=low[j]; 25 pos=j; 26 } 27 } 28 used[pos]=1;//标记flag 29 for(j=1