Python Pandas replace multiple columns zero to Nan
List with attributes of persons loaded into pandas dataframe df2 . For cleanup I want to replace value zero ( 0 or '0' ) by np.nan . df2.dtypes ID object Name object Weight float64 Height float64 BootSize object SuitSize object Type object dtype: object Working code to set value zero to np.nan : df2.loc[df2['Weight'] == 0,'Weight'] = np.nan df2.loc[df2['Height'] == 0,'Height'] = np.nan df2.loc[df2['BootSize'] == '0','BootSize'] = np.nan df2.loc[df2['SuitSize'] == '0','SuitSize'] = np.nan Believe this can be done in a similar/shorter way: df2[["Weight","Height","BootSize","SuitSize"]].astype