伺服电机

运动控制基础

旧街凉风 提交于 2020-03-08 16:09:14
运动控制基础 1.控制电机分类 在工业运动控制中,电机通常使用的有两种,步进电机与伺服电机。而其中步进电机,常用的有2相4线步进与2相6线步进(只接其中4根线可以实现高转速,小转矩或低转速,大转矩)以及5相步进电机;伺服电机,分为交流伺服电机和直流伺服电机。 步进电机的工作原理,例如两相四线步进电机,两对绕组,供电即转子被电磁自锁,发送脉冲信号控制转速和位置。发送脉冲的频率控制电机转速;发送脉冲的个数控制电机的转动距离。这种控制也可以称为开环位置控制。 伺服电机的工作原理,交流伺服电机,一般分为同步伺服电机和异步伺服电机,通常控制用的是同步伺服电机。同步伺服电机,有两相绕组构成外定子,一相绕组为励磁绕组,一相绕组为控制绕组。此两相绕组的电,通常使用三相的线电流和相电流从而产生90度的偏差值,以此来产生一个旋转磁场来带动永磁体的转子。因此,交流伺服电机的电源通常是三相电或单相电,少数直接使用直流电(内部使用逆变器转交流提供的UVW)。直流伺服电机,一般分为有刷直流伺服电机和无刷直流伺服电机。有刷伺服直流电机,其构造与控制原理与普通直流电机差不多。无刷直流伺服电机,由三相绕组构成,内部采用星型或三角型连接方式,外部UVW接三相直流电,同时需要位移传感器进行相序检测以及控制。其控制原理与步进电机近似,但其不带有供电即电磁自锁功能。 2.控制电机的信号源与控制模式

伺服电机常见故障分析汇总

和自甴很熟 提交于 2020-01-17 15:14:35
在工业生产中,机械设备会因不同的工作环境和生产因素影响,伺服电机会出现常见故障,维修处理技巧分析如下: 1、窜动现象 在进给时出现窜动现象,测速信号不稳定,如编码器有裂纹;接线端子接触不良,如螺钉松动等;当窜动发生在由正方向运动与反方向运动的换向瞬间时,一般是由于进给传动链的反向问隙或伺服驱动增益过大所致。 2、爬行现象 大多发生在起动加速段或低速进给时,一般是由于进给传动链的润滑状态不良,伺服系统增益低及外加负载过大等因素所致。尤其要注意的是,伺服电动机和滚珠丝杠联接用的联轴器,由于连接松动或联轴器本身的缺陷,如裂纹等,造成滚珠丝杠与伺服电动机的转动不同步,从而使进给运动忽快忽慢。 3、振动现象 机床高速运行时,可能产生振动,这时就会产生过流报警。机床振动问题一般属于速度问题,所以应寻找速度环问题。 4、转矩降低现象 伺服电机从额定堵转转矩到高速运转时,发现转矩会突然降低,这时因为电动机绕组的散热损坏和机械部分发热引起的。高速时,电动机温升变大,因此,正确使用伺服电机前一定要对电机的负载进行验算。 5、位置误差现象 当伺服轴运动超过位置允差范围时( EA100出厂标准设置PA17:400,位置超差检测范围),伺服驱动器就会出现“4”号位置超差报警。主要原因有:系统设定的允差范围小;伺服系统增益设置不当;位置检测装置有污染;进给传动链累计误差过大等。 6、不转现象

直流伺服电机的工作原理及驱动方法

匿名 (未验证) 提交于 2019-12-02 23:43:01
 直流伺服电机的工作原理及驱动方法   伺服系统的发展经历了由液压到电气的过程,电气何服系统根据所驱动的电机类型分为直流(DC)伺服系统和交流(AC)伺服系统。20世纪50年代,无刷电机和直流电机实现了产品化,并在计算机外围设备和机械设备上获得了广泛的应用。20世纪70年代则是直流何服电机应用最为广泛的时代。伺服电机是自动装置中的执行元件,它的最大特点是可控,在有控制信号时,伺服电机就转动,且转速大小正比于控制电压的大小,除去控制信号电压后,饲服电机就立即停止转动。    伺服电机 应用甚广,几乎所有的自动控制系统中都需要用到,例如测速电机,它的输出正比于电机的速度,或者齿轮盒驱动电位器机构,它的输出正比于电位器移动的位置。当这类电机与适当的功率控制反馈环配合时,它的速度可以与外部振荡器频率精确领定,或与外部位移控制旋钮进行锁定唱机或激光唱机的转盘常用伺服电机,天线转动系统、遥控模型飞机和舰船也都要用到何服电机。   直流伺服电动机通过电刷和换向器产生的整流作用,使磁场磁动势和电枢电流磁动势正交,从面产生转矩。其电枢大多为永久磁铁。同交流伺服电动机相比,直流何服电动机起动转矩大,调速广且不受频率及极对数限制(特别是电枢控制的),机械特性线性度好,从零转速至额定转速具备可提供额定转矩的性能,功率损耗小,具有较高的响应速度、精度和频率,优良的控制特性,这些是它的优点