Task3:逻辑回归
逻辑回归 1.逻辑回归与线性回归的联系与区别 2.逻辑回归的原理 3.逻辑回归损失函数推导及优化 4.正则化与模型评估指标 5.逻辑回归的优缺点 6.样本不均匀问题解决办法 7.Sklean参数 8.代码实现 1.逻辑回归与线性回归的联系与区别 线性回归解决的是连续变量的问题,但离散性变量,在分类任务中使用线性回归,效果不理想。` 例子: 图显示了是否购买玩具和年龄之间的关系,可以用线性回归拟合成一条直线,将购买标注为1,不购买标注为0,拟合后取当0.5值为阈值来划分类别。 y ^ = { 1 , f ( x ) > 0.5 , 0 , f ( x ) < 0.5 \hat y =\begin{cases} 1, f(x)>0.5, \\\\0, f(x)<0.5\end{cases} y ^ = ⎩ ⎪ ⎨ ⎪ ⎧ 1 , f ( x ) > 0 . 5 , 0 , f ( x ) < 0 . 5 可以看到,在途中,年龄的区分点约为19岁。 但当数据点不平衡时,很容易影响到阈值,见以下图: 可以看到,0值样本的年龄段往高年龄端偏移后,真实的阈值依然是19岁左右,但拟合出来的曲线的阈值往后边偏移了。可以想想,负样本越多,年龄大的人越多,偏移越严重。 实际情况是60岁的老人和80岁的老人都不会购买玩具,增加几位80岁的老人,并不会影响20岁以下人群购买玩具的概率