blas

Multiplying real matrix with a complex vector using BLAS

懵懂的女人 提交于 2021-01-26 19:07:26
问题 How can I use Blas to multiply a real matrix with a complex vector ? When I use functions like ccsrgemv() I get type mismatch errors? error: argument of type "float *" is incompatible with parameter of type "std::complex<float> *" 回答1: Use two matrix-vector multiplications (A * (x + iy) = A * x + i A * y). More precisely, consider your complex vector as two entangled real vectors with stride 2. BLAS lets you do this. UPDATE : actually, I did not notice that you were doing Sparse BLAS. For

Does MKL optimize cblas for *major order?

☆樱花仙子☆ 提交于 2020-12-29 06:41:40
问题 I am using mkl cblas_dgemm and currently have it with CblasRowMajor , CblasNoTrans , CblasNotrans , for my matrices. I know that c is a row major language, whereas dgemm is a column major algorithm. I am interested to know if switching the ordering of the matrices will have any affect on the cblas_dgemm algorithm if I am linking against mkl . Is mkl smart enough to do things behind the scenes that I would try to do to optimized the matrix multiplcations? If not, what is the best way to

Does MKL optimize cblas for *major order?

纵饮孤独 提交于 2020-12-29 06:41:19
问题 I am using mkl cblas_dgemm and currently have it with CblasRowMajor , CblasNoTrans , CblasNotrans , for my matrices. I know that c is a row major language, whereas dgemm is a column major algorithm. I am interested to know if switching the ordering of the matrices will have any affect on the cblas_dgemm algorithm if I am linking against mkl . Is mkl smart enough to do things behind the scenes that I would try to do to optimized the matrix multiplcations? If not, what is the best way to

Why does not ldd output the libraries that I have linked when generating the executable file?

只谈情不闲聊 提交于 2020-12-06 05:42:20
问题 I have linked the project with ATLAS library, -llapack -lf77blas -lcblas -latlas -lgfortran , and it could compile successfully. But when I use the ldd command to view the dependency libraries, the output is as follows: ubuntu@ubuntu-desktop:~/Desktop/qt_output$ldd test_atlas linux-vdso.so.1 => (0x00007fffa99ff000) libopencv_core.so.2.4 => /home/ubuntu/Documents/3rdparty/lib/libopencv_core.so.2.4 (0x00007fe0577d7000) libgfortran.so.3 => /usr/lib/x86_64-linux-gnu/libgfortran.so.3

Why does not ldd output the libraries that I have linked when generating the executable file?

為{幸葍}努か 提交于 2020-12-06 05:41:17
问题 I have linked the project with ATLAS library, -llapack -lf77blas -lcblas -latlas -lgfortran , and it could compile successfully. But when I use the ldd command to view the dependency libraries, the output is as follows: ubuntu@ubuntu-desktop:~/Desktop/qt_output$ldd test_atlas linux-vdso.so.1 => (0x00007fffa99ff000) libopencv_core.so.2.4 => /home/ubuntu/Documents/3rdparty/lib/libopencv_core.so.2.4 (0x00007fe0577d7000) libgfortran.so.3 => /usr/lib/x86_64-linux-gnu/libgfortran.so.3

python3安装pandas执行pip3 install pandas命令后卡住不动的问题及安装scipy、sklearn库的numpy.distutils.system_info.NotFo...

自闭症网瘾萝莉.ら 提交于 2020-11-21 04:15:45
一直尝试在python3中安装pandas等一系列软件,但每次执行pip3 install pandas后就卡住不动了,一直停在那,开始以为是pip命令的版本不对,还执行过 python -m pip3 install -U pip3 升级命令,发现还是不行。 有了上一篇python2中安装的经验可知肯定是numpy的版本不对,查看 /usr/lib/python3/dist-packages 目录下查看发现确实是1.8的版本,而从python2中的经验可知应该至少得1.9.0以上的版本。 1. 卸载当前numpy版本, sudo pip uninstall numpy 命令后报错 Not uninstalling numpy at /usr/lib/python2.7/dist-packages, owned by OS, 按照 https://blog.csdn.net/TYOUKAI_/article/details/78116912#commentBox 经验 rm -rf numpy-1.8.2.egg-info 删除了/usr/lib/python3/dist-packages 目录下文件后,再执行 sudo pip uninstall numpy 命令就报未安装numpy了。所以就直接装1.9.0的numpy吧,居然装上了,然后装pandas居然也能装上了

华为鲲鹏产业生态加速算力升级,企业数字化转型在山西吹响号角

非 Y 不嫁゛ 提交于 2020-11-01 00:28:24
2020年,新基建风口已至,建设数字基础设施,打造数字产业生态是其关键与核心,而算力底座将成为其重要的运行支撑。数字化浪潮大背景下,鲲鹏计算产业生态,充满巨大的想象与发展空间。 从企业数字化转型角度来看,IT不再是企业内部系统支撑的组织,可能是对企业发展驱动的核心的竞争力。其中,基于云计算的虚拟化技术必将成为企业核心的竞争力。 近日,由山西省工业和信息化厅、山西转型综改示范区管委会、华为技术有限公司、山西云时代技术有限公司和山西鲲鹏生态创新中心共同举办了1024鲲鹏展翅“员来有你”鲲鹏程序员节系列活动-DevRun开发者沙龙,来自华为的技术专家从DevCloud、鲲鹏软件迁移实战、鲲鹏计算云平台解决方案等维度介绍了鲲鹏计算产业。 据山西云时代鲲鹏生态创新中心有限公司副总经理张骅介绍,此次开展基于鲲鹏创新体系的活动,是为了向参加鲲鹏生态的企业、人员和学生提供专业化的服务,包括鲲鹏计算资源、软件产品适配构建和应用代码迁移等公共服务,共同推进基于鲲鹏生态研发的企业应有创新及软件项目孵化活动。 目前,山西云时代鲲鹏生态创新中心正在建立鲲鹏适配区域和认证实验室,以及一体化培训创新中心,预计在下个月就可以投入使用。 做自主可控的中国版Devcloud软件生态 软件定义一切,所有的公司和企业、组织都必将面临数字化转化之路。 当然,数字化时代最典型的一个技术特征就是云计算

Arm架构安装opencv(python3)

被刻印的时光 ゝ 提交于 2020-10-04 12:13:11
一、安装python3.5+(或使用已安装版) yum install -y python36 yum install -y python36-setuptools yum install -y python36-pip 二、安装numpy pip3 install numpy(==1.15.1,可选 )-i https://pypi.tuna.tsinghua.edu.cn/simple 三、其他包根据错误提供安装即可 四、编译安装opencv-python(官方不支持pip方式安装arm版opencv) wget https://github.com/opencv/opencv_contrib/archive/3.4.10.zip wget https://github.com/opencv/opencv/archive/3.4.10.zip 解压以上目录到/root/opencv-build,解压后有两个目录: /root/opencv-build/opencv-3.4.10 /root/opencv-build/opencv_contrib-3.4.10 进入 /root/opencv-build/opencv-3.4.10目录开始编译: 1.mkdir build & cd build 2.cmake -D BUILD_opencv_python3=YES -D

optim c++优化库配置(windows环境,mingw)

[亡魂溺海] 提交于 2020-10-02 21:13:50
optim c++优化库配置(windows环境,mingw) windows环境下做科学计算常用的库是blas,lapack,openblas等,这些和矩阵运算有关,代码也是经过高度优化,下面介绍一个轻量的c++版本优化库optim在win环境下的安装使用方法,如果是linux的话可以用包管理器安装依赖,方便很多,这里就不做介绍了。 预备软件: mingw 730(笔者将qt5自带的设置为系统全局gcc/g++环境),cmder/git bash(提供linux环境,方便执行),cmake(编译lapack使用),armadillo编译安装(可以先编译安装openblas),Eigen下载安装(其实只需要头文件即可); OpenBlas源码编译安装(https://www.openblas.net/) 下载openblas源码,解压,打开cmder终端,执行: mkdir build cd build cmake -G "MinGW Makefiles" .. cmake-gui .. #使用图形化命令查看编译选项,勾选DYNAMIC_ARCH,可以生成对芯片架构进行指令优化;天天Entry:BUILD_SHARED_LIBS,生成动态链接库 cmake --build . -j 4. #新版cmake已经支持编译命令了 cmake --install . #默认安装至"C: