标准差公式

方差、标准差、协方差、相关系数

最后都变了- 提交于 2019-11-29 21:19:15
链接:https://www.cnblogs.com/raorao1994/p/9050697.html 方差、标准差、协方差、相关系数 【方差】   (variance)是在概率论和统计方差衡量 随机变量 或一组数据时离散程度的度量。概率论中方差用来度量 随机变量 和其 数学期望 (即 均值 )之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的 平均数 。在许多实际问题中,研究方差即偏离程度有着重要意义。方差是衡量源数据和期望值相差的度量值。(百度百科)      在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。总体方差计算公式:      实际工作中,总体均数难以得到时,应用样本统计量代替总体参数,经校正后,样本方差计算公式:   S^2= ∑(X- ) ^2 / (n-1) S^2为样本方差,X为变量, 为样本均值,n为样本例数。(无偏估计) 【标准差】   标准差(Standard Deviation) ,中文环境中又常称 均方差 ,是离均差平方的算术平均数的平方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。标准差也被称为 标准偏差 ,或者实验标准差

08 方差与标准差

Deadly 提交于 2019-11-29 08:22:57
方差 在概率论和统计学中,一个随机变量的方差(Variance)描述的是它的离散程度,也就是该变量离其期望值的距离。一个实随机变量的方差也称为它的二阶矩或二阶中心动差,恰巧也是它的二阶累积量。方差的算术平方根称为该随机变量的标准差。 其定义为:如果E(X)是随机变量X的期望值(平均数) 设为服从分布F的随机变量,则称 为随机变量或者分布的方差: 其中,μ为平均数,N为样本总数。 分别针对离散型随机变量和连续型随机变量而言,方差的分布律和概率密度如下图所示: 标准差 标准差(Standard Deviation),在概率统计中最常使用作为统计分布程度(statistical dispersion)上的测量。标准差定义为方差的算术平方根,反映组内个体间的离散程度。 简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。例如,两组数的集合 {0, 5, 9, 14} 和 {5, 6, 8, 9} 其平均值都是 7 ,但第二个集合具有较小的标准差。 前面说过,方差的算术平方根称为该随机变量的标准差,故一随机变量的标准差定义为: 须注意并非所有随机变量都具有标准差,因为有些随机变量不存在期望值。 如果随机变量X为 具有相同概率,则可用上述公式计算标准差。上述方差.标准差等相关内容

方差 标准差 协方差

…衆ロ難τιáo~ 提交于 2019-11-29 05:47:05
方差 方差用来度量随机变量和其数学期望之间的偏离程度,variance =E[(X-EX)(X-EX)] 标准差和均值的量纲(单位)是一致的,在描述一个波动范围时标准差比方差更方便。 存在一个值为N的分母,其作用为将计算得到的累积偏差进行平均,从而消除数据集大小对计算数据离散程度所产生的影响。不过,使用N所计算得到的方差及标准差只能用来表示该数据集本身(population)的离散程度;如果数据集是某个更大的研究对象的样本(sample),那么在计算该研究对象的离散程度时,就需要对上述方差公式和标准差公式进行贝塞尔修正,将N替换为N-1: 简单的说,是除以 N 还是 除以 N-1,则要看样本是否全,比如,我要统计全国20岁男性的平均身高,你肯定拿不到全部20岁男性的身高,所以只能随机抽样 500名,这时要除以 N-1,因为只是部分数据(称为整体数据的 无偏估计 );但是我们算沪深300在2017年3月份的涨跌幅,我们是可以全部拿到3月份的数据的,所以我们拿到的是全部数据,这时就要除以 N。 协方差 协方差Covariance用于描述2个随机变量偏离其均值的程度,cov(X,Y)=E[(X-EX)(Y-EY)]=E(XY)-E(X)*E(Y) 协方差作为描述X和Y相关程度的方法,在同一物理量纲下有一定的作用。但是两个变量采用不同的量纲时,他们的协方差在数值上会表现出很大的差异