贝叶斯统计

【cs229-Lecture11】贝叶斯统计正则化

这一生的挚爱 提交于 2020-02-10 07:53:58
本节知识点: 贝叶斯统计及规范化 在线学习 如何使用机器学习算法解决具体问题:设定诊断方法,迅速发现问题 贝叶斯统计及规范化(防止过拟合的方法) 就是要找更好的估计方法来减少过度拟合情况的发生。 回顾一下,线性回归中使用的估计方法是最小二乘法,logistic 回归是条件概率的最大 似然估计,朴素贝叶斯是联合概率的最大似然估计,SVM 是二次规划。 一下转自: http://52opencourse.com/133/coursera 斯坦福大学机器学习第七课"正则化“学习笔记,本次课程主要包括4部分: 1) The Problem of Overfitting(过拟合问题) 2) Cost Function(成本函数) 3) Regularized Linear Regression(线性回归的正则化) 4) Regularized Logistic Regression(逻辑回归的正则化) 以下是每一部分的详细解读。 1) The Problem of Overfitting(过拟合问题) 拟合问题举例-线性回归之房价问题: a) 欠拟合(underfit, 也称High-bias) b) 合适的拟合: c) 过拟合(overfit,也称High variance) 什么是过拟合(Overfitting): 如果我们有非常多的特征

贝叶斯统计概要(待修改)

こ雲淡風輕ζ 提交于 2019-12-05 05:23:20
一:频率派,贝叶斯派的哲学 现在考虑一个最最基本的问题,到底什么是概率?当然概率已经是在数学上严格的,良好定义的,这要归功于30年代大数学家A.N.Kolmogrov的概率论公理化。但是数学上的概率和现实世界到底是有怎样的关系?我们在用数学理论--------概率论解决实际问题的时候,又应该用什么样的观点呢?这真差不多是个哲学问题。这个问题其实必须得好好考察一下,下面我们看看最基本的两种哲学观,分别来自频率派和贝叶斯派, 我们这里的 “哲学” 指的是数学研究中朴素的哲学观念,而不是很严肃的哲学讨论。 1.1. 经典的统计(频率派)的哲学 : 1)概率指的是频率的极限,概率是真实世界的客观性质(objective property) 2)概率分布的参数都是固定的,通常情况下未知的常数,不存在"参数$\theta$满足XXX的概率是X"这种概念。 3)统计方法应该保证具有良好的极限频率性质,例如95%区间估计应该保证当$N$足够大的时候,我们选取$N$个样本集$S_{1}$, $S_{2}$,...,$S_{N}$所计算出来的相应的区间$I_{1}$,$I_{2}$,...,$I_{N}$中将有至少95%*N个区间包含我们需要估计的统计量的真实值。 我们从上看到,经典频率派的统计是非常具有 唯物主义(materialism) 色彩的,而贝叶斯的哲学大不一样

贝叶斯统计概要(待修改)

£可爱£侵袭症+ 提交于 2019-12-05 03:25:02
一:贝叶斯的哲学 现在考虑一个最最基本的问题,到底什么是概率?当然概率已经是在数学上严格的,良好定义的,这要归功于30年代大数学家A.N.Kolmogrov的概率论公理化。但是数学上的概率和现实世界到底是有怎样的关系?我们在用数学理论--------概率论解决实际问题的时候,又应该用什么样的观点呢?这真差不多是个哲学问题。这个问题其实必须得好好考察一下,下面我们看看最基本的两种哲学观,分别来自频率派和贝叶斯派, 我们这里的 “哲学” 指的是数学研究中朴素的哲学观念,而不是很严肃的哲学讨论。 1.1. 经典的统计推断(频率派)的哲学 : 1)概率指的是频率的极限,概率是真实世界的客观性质(objective property) 2)概率分布的参数都是固定的,通常情况下未知的常数,不存在"参数$\theta$满足XXX的概率是X"这种概念。 3)统计方法应该保证具有良好的极限频率性质,例如95%区间估计应该保证当$N$足够大的时候,我们选取$N$个样本集$S_{1}$, $S_{2}$,...,$S_{N}$所计算出来的相应的区间$I_{1}$,$I_{2}$,...,$I_{N}$中将有至少95%*N个区间包含我们需要估计的统计量的真实值。 我们从上看到,经典频率派的统计是非常具有 唯物主义(materialism) 色彩的,而贝叶斯的哲学大不一样,据考证贝叶斯是英格兰的一名牧师