04 朴素贝叶斯法——读书笔记
一、相关概念: 先验概率: 是指事件发生前的预判概念,也可以说是“因”发生的概率,即表示为 P(X)。 条件概率: 是指事件发生后求得反向条件概率,也可以说是在“因”的条件下,“果”发生的概率,即表示为 P(Y|X)。 后验概率: 一个事件发生后导致另一个事件发生的概率,也可以说是在“果”出现的情况下,是什么“因”导致的概率,即表示为P(X|Y)。 似然概率: 类似于条件概率,即“因”的条件下,“果”发生的概率,即表示为 P(Y|X)。 贝叶斯定理:(又称条件概率定理) P ( Y ∣ X ) = P ( X ∣ Y ) ∗ P ( Y ) P ( X ) P(Y|X)=\frac{P(X|Y)*P(Y)}{P(X)} P ( Y ∣ X ) = P ( X ) P ( X ∣ Y ) ∗ P ( Y ) 二、朴素贝叶斯法概述: 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入输出的联合概率分布;然后基于该模型,对于给定的输入 x x x ,利用贝叶斯定理求出后验概率最大的输出 y y y . 先验概率分布、条件概率分布、联合概率分布: 已知输入空间 χ ⫅ R n \chi \subseteqq R^{n} χ ⫅ R n 为 n n n 维向量的集合,输出空间为类标记集合 γ = { c 1 , c 2 , .