八皇后问题(又名: 高斯八皇后)
题目连接: 八皇后问题 题目: 会下国际象棋的人都很清楚:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。 对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,即a=b 1b 2…b 8,其中b i为相应摆法中第i行皇后所处的列数。已经知道8皇后问题一共有92组解(即92个不同的皇后串)。 给出一个数b,要求输出第b个串。串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。 Input 第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数b(1 <= b <= 92) Output 输出有n行,每行输出对应一个输入。输出应是一个正整数,是对应于b的皇后串。 Sample Input 2 1 92 Sample Output 15863724 84136275 注: 字符串中的数字表示不同行上的列坐标 例如15863724的含义是八个皇后分别位于(1, 1), (2, 5), (3, 8), (4, 6), (5, 3), (6, 7), (7, 2), (8, 4)处. 解题思路: 本题是 DFS 算法的一道经典例题, 一共8*8的棋盘要放8个皇后, 并且他们彼此还无法相互攻击, 那么我们很容易得到一个结论: