MNIST手写数字分类simple版(03-2)
simple版本nn模型 训练手写数字处理 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist=input_data.read_data_sets("MNIST_data", one_hot=True) #每个批次的大小 batch_size=100 #计算一共有多少批次 n_batch=mnist.train.num_examples // batch_size #定义两个placeholder x=tf.placeholder(tf.float32,[None,784]) y=tf.placeholder(tf.float32,[None,10]) #创建一个简单的神经网络 W=tf.Variable(tf.zeros([784,10])) b=tf.Variable(tf.zeros([1,10])) prediction=tf.nn.softmax(tf.matmul(x,W)+b) #二次代价函数 loss=tf.reduce_mean(tf.square(y-prediction)) #使用剃度下降法 train_step=tf.train.GradientDescentOptimizer(0.2).minimize(loss)