Should we parallelize a DataFrame like we parallelize a Seq before training
问题 Consider the code given here, https://spark.apache.org/docs/1.2.0/ml-guide.html import org.apache.spark.ml.classification.LogisticRegression val training = sparkContext.parallelize(Seq( LabeledPoint(1.0, Vectors.dense(0.0, 1.1, 0.1)), LabeledPoint(0.0, Vectors.dense(2.0, 1.0, -1.0)), LabeledPoint(0.0, Vectors.dense(2.0, 1.3, 1.0)), LabeledPoint(1.0, Vectors.dense(0.0, 1.2, -0.5)))) val lr = new LogisticRegression() lr.setMaxIter(10).setRegParam(0.01) val model1 = lr.fit(training) Assuming we