字典树(Trie树)
一:什么是Trie树 Trie树,即字典树,又称单词查找树或键树,是一种树形结构,是一种哈希树的变种。典型应用是用于统计和排序大量的字符串(但不仅限于字符串),所以经常被 搜索引擎 系统用于文本词频统计。它的优点是:最大限度地减少无谓的字符串比较,查询效率比哈希表高。 Trie的核心思想是空间换时间。利用字符串的公共前缀来降低查询时间的开销以达到提高效率的目的。 它有3个基本性质: 1. 根节点不包含字符,除根节点外每一个节点都只包含一个字符。 2. 从根节点到某一节点,路径上经过的字符连接起来,为该节点对应的字符串。 3. 每个节点的所有子节点包含的字符都不相同。 二:树的构建 举个在网上流传颇广的例子,如下: 题目:给你100000个长度不超过10的单词。对于每一个单词,我们要判断他出没出现过,如果出现了,求第一次出现在第几个位置。 分析:这题当然可以用hash来解决,但是本文重点介绍的是trie树,因为在某些方面它的用途更大。比如说对于某一个单词,我们要询问它的前缀是否出现过。这样hash就不好搞了,而用trie还是很简单。 现在回到例子中,如果我们用最傻的方法,对于每一个单词,我们都要去查找它前面的单词中是否有它。那么这个算法的复杂度就是O(n2 )。显然对于100000的范围难以接受。现在我们换个思路想。假设我要查询的单词是abcd