LSTM module for Caffe

匿名 (未验证) 提交于 2019-12-03 03:04:01

问题:

Does anyone know if there exists a nice LSTM module for Caffe? I found one from a github account by russel91 but apparantly the webpage containing examples and explanations disappeared (Formerly http://apollo.deepmatter.io/ --> it now redirects only to the github page which has no examples or explanations anymore).

回答1:

I know Jeff Donahue worked on LSTM models using Caffe. He also gave a nice tutorial during CVPR 2015. He has a pull-request with RNN and LSTM.

Update: there is a new PR by Jeff Donahue including RNN and LSTM. This PR was merged on June 2016 to master.



回答2:

In fact, training recurrent nets is often done by unrolling the net. That is, replicating the net over the temporal steps (sharing weights across the temporal steps) and simply doing forward-backward passes on the unrolled model.

To unroll LSTM (or any other unit) you don't have to use Jeff Donahue's recurrent branch, but rather use NetSpec() to explicitly unroll the model.

Here's a simple example:

from caffe import layers as L, params as P, to_proto import caffe  # some utility functions def add_layer_to_net_spec(ns, caffe_layer, name, *args, **kwargs):   kwargs.update({'name':name})   l = caffe_layer(*args, **kwargs)   ns.__setattr__(name, l)   return ns.__getattr__(name) def add_layer_with_multiple_tops(ns, caffe_layer, lname, ntop, *args, **kwargs):       kwargs.update({'name':lname,'ntop':ntop})   num_in = len(args)-ntop # number of input blobs   tops = caffe_layer(*args[:num_in], **kwargs)   for i in xrange(ntop):       ns.__setattr__(args[num_in+i],tops[i])   return tops  # implement single time step LSTM unit def single_time_step_lstm( ns, h0, c0, x, prefix, num_output, weight_names=None):   """   see arXiv:1511.04119v1   """   if weight_names is None:       weight_names = ['w_'+prefix+nm for nm in ['Mxw','Mxb','Mhw']]   # full InnerProduct (incl. bias) for x input   Mx = add_layer_to_net_spec(ns, L.InnerProduct, prefix+'lstm/Mx', x,                     inner_product_param={'num_output':4*num_output,'axis':2,                                            'weight_filler':{'type':'uniform','min':-0.05,'max':0.05},                                            'bias_filler':{'type':'constant','value':0}},                     param=[{'lr_mult':1,'decay_mult':1,'name':weight_names[0]},                            {'lr_mult':2,'decay_mult':0,'name':weight_names[1]}])   Mh = add_layer_to_net_spec(ns, L.InnerProduct, prefix+'lstm/Mh', h0,                     inner_product_param={'num_output':4*num_output, 'axis':2, 'bias_term': False,                                        'weight_filler':{'type':'uniform','min':-0.05,'max':0.05},                                        'bias_filler':{'type':'constant','value':0}},                     param={'lr_mult':1,'decay_mult':1,'name':weight_names[2]})   M = add_layer_to_net_spec(ns, L.Eltwise, prefix+'lstm/Mx+Mh', Mx, Mh,                           eltwise_param={'operation':P.Eltwise.SUM})   raw_i1, raw_f1, raw_o1, raw_g1 = \   add_layer_with_multiple_tops(ns, L.Slice, prefix+'lstm/slice', 4, M,                              prefix+'lstm/raw_i', prefix+'lstm/raw_f', prefix+'lstm/raw_o', prefix+'lstm/raw_g',                              slice_param={'axis':2,'slice_point':[num_output,2*num_output,3*num_output]})   i1 = add_layer_to_net_spec(ns, L.Sigmoid, prefix+'lstm/i', raw_i1, in_place=True)   f1 = add_layer_to_net_spec(ns, L.Sigmoid, prefix+'lstm/f', raw_f1, in_place=True)   o1 = add_layer_to_net_spec(ns, L.Sigmoid, prefix+'lstm/o', raw_o1, in_place=True)   g1 = add_layer_to_net_spec(ns, L.TanH, prefix+'lstm/g', raw_g1, in_place=True)   c1_f = add_layer_to_net_spec(ns, L.Eltwise, prefix+'lstm/c_f', f1, c0, eltwise_param={'operation':P.Eltwise.PROD})   c1_i = add_layer_to_net_spec(ns, L.Eltwise, prefix+'lstm/c_i', i1, g1, eltwise_param={'operation':P.Eltwise.PROD})   c1 = add_layer_to_net_spec(ns, L.Eltwise, prefix+'lstm/c', c1_f, c1_i, eltwise_param={'operation':P.Eltwise.SUM})   act_c = add_layer_to_net_spec(ns, L.TanH, prefix+'lstm/act_c', c1, in_place=False) # cannot override c - it MUST be preserved for next time step!!!   h1 = add_layer_to_net_spec(ns, L.Eltwise, prefix+'lstm/h', o1, act_c, eltwise_param={'operation':P.Eltwise.PROD})   return c1, h1, weight_names 

Once you have the single time step, you can unroll it as many times you want...

def exmaple_use_of_lstm():   T = 3 # number of time steps   B = 10 # batch size   lstm_output = 500 # dimension of LSTM unit    # use net spec   ns = caffe.NetSpec()    # we need initial values for h and c   ns.h0 = L.DummyData(name='h0', dummy_data_param={'shape':{'dim':[1,B,lstm_output]},                                'data_filler':{'type':'constant','value':0}})    ns.c0 = L.DummyData(name='c0', dummy_data_param={'shape':{'dim':[1,B,lstm_output]},                                    'data_filler':{'type':'constant','value':0}})    # simulate input X over T time steps and B sequences (batch size)   ns.X = L.DummyData(name='X', dummy_data_param={'shape': {'dim':[T,B,128,10,10]}} )   # slice X for T time steps   xt = L.Slice(ns.X, name='slice_X',ntop=T,slice_param={'axis':0,'slice_point':range(1,T)})   # unroling   h = ns.h0   c = ns.c0   lstm_weights = None   tops = []   for t in xrange(T):     c, h, lstm_weights = single_time_step_lstm( ns, h, c, xt[t], 't'+str(t)+'/', lstm_output, lstm_weights)     tops.append(h)     ns.__setattr__('c'+str(t),c)     ns.__setattr__('h'+str(t),h)   # concat all LSTM tops (h[t]) to a single layer   ns.H = L.Concat( *tops, name='concat_h',concat_param={'axis':0} )   return ns 

Writing the prototxt:

ns = exmaple_use_of_lstm() with open('lstm_demo.prototxt','w') as W:   W.write('name: "LSTM using NetSpec example"\n')   W.write('%s\n' % ns.to_proto()) 

The resulting unrolled net (for three time steps) looks like



文章来源: LSTM module for Caffe
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!