This question already has an answer here:
I'm trying to convert a column using pd.to_numeric, but for some reason it turns all values (except one) into NaN:
In[]: pd.to_numeric(portfolio["Principal Remaining"],errors="coerce") Out[]: 1 NaN 2 NaN 3 NaN 4 NaN 5 NaN 6 NaN 7 NaN 8 NaN 9 NaN 10 NaN 11 NaN 12 NaN 13 NaN 14 NaN 15 NaN 16 NaN 17 NaN 18 836.61 19 NaN 20 NaN ... Name: Principal Remaining, Length: 32314, dtype: float64
Thoughts on why this is happening? The original data looks like this:
1 18,052.02 2 27,759.85 3 54,061.75 4 89,363.61 5 46,954.46 6 64,295.64 7 100,000.00 8 27,905.98 9 13,821.48 10 16,937.89 ... Name: Principal Remaining, Length: 32314, dtype: object