可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
Problem
I would like to know how to get the distance and bearing between 2 GPS points. I have researched on the haversine formula. Someone told me that I could also find the bearing using the same data.
Edit
Everything is working fine but the bearing doesn't quite work right yet. The bearing outputs negative but should be between 0 - 360 degrees. The set data should make the horizontal bearing 96.02166666666666
and is:
Start point: 53.32055555555556 , -1.7297222222222221 Bearing: 96.02166666666666 Distance: 2 km Destination point: 53.31861111111111, -1.6997222222222223 Final bearing: 96.04555555555555
Here is my new code:
from math import * Aaltitude = 2000 Oppsite = 20000 lat1 = 53.32055555555556 lat2 = 53.31861111111111 lon1 = -1.7297222222222221 lon2 = -1.6997222222222223 lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2]) dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2 c = 2 * atan2(sqrt(a), sqrt(1-a)) Base = 6371 * c Bearing =atan2(cos(lat1)*sin(lat2)-sin(lat1)*cos(lat2)*cos(lon2-lon1), sin(lon2-lon1)*cos(lat2)) Bearing = degrees(Bearing) print "" print "" print "--------------------" print "Horizontal Distance:" print Base print "--------------------" print "Bearing:" print Bearing print "--------------------" Base2 = Base * 1000 distance = Base * 2 + Oppsite * 2 / 2 Caltitude = Oppsite - Aaltitude a = Oppsite/Base b = atan(a) c = degrees(b) distance = distance / 1000 print "The degree of vertical angle is:" print c print "--------------------" print "The distance between the Balloon GPS and the Antenna GPS is:" print distance print "--------------------"
回答1:
Here's a Python version:
from math import radians, cos, sin, asin, sqrt def haversine(lon1, lat1, lon2, lat2): """ Calculate the great circle distance between two points on the earth (specified in decimal degrees) """ # convert decimal degrees to radians lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2]) # haversine formula dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2 c = 2 * asin(sqrt(a)) r = 6371 # Radius of earth in kilometers. Use 3956 for miles return c * r
回答2:
The bearing calculation is incorrect, you need to swap the inputs to atan2.
bearing = atan2(sin(long2-long1)*cos(lat2), cos(lat1)*sin(lat2)-sin(lat1)*cos(lat2)*cos(long2-long1)) bearing = degrees(bearing) bearing = (bearing + 360) % 360
This will give you the correct bearing.
回答3:
You can solve the negative bearing problem by adding 360°. Unfortunately, this might result in bearings larger than 360° for positive bearings. This is a good candidate for the modulo operator, so all in all you should add the line
Bearing = (Bearing + 360) % 360
at the end of your method.
回答4:
You can try the following:
from haversine import haversine haversine((45.7597, 4.8422),(48.8567, 2.3508),miles = True) 243.71209416020253
回答5:
The Y in atan2 is, by default, the first parameter. Here is the documentation. You will need to switch your inputs to get the correct bearing angle.
bearing = atan2(sin(lon2-lon1)*cos(lat2), cos(lat1)*sin(lat2)in(lat1)*cos(lat2)*cos(lon2-lon1)) bearing = degrees(bearing) bearing = (bearing + 360) % 360
回答6:
Refer to this link :https://gis.stackexchange.com/questions/84885/whats-the-difference-between-vincenty-and-great-circle-distance-calculations
this actually gives two ways of getting distance. They are Haversine and Vincentys. From my research I came to know that Vincentys is relatively accurate. Also use import statement to make the implementation.
回答7:
Most of these answers are "rounding" the radius of the earth. If you check these against other distance calculators (such as geopy), these functions will be off.
This works well:
lon1 = -103.548851 lat1 = 32.0004311 lon2 = -103.6041946 lat2 = 33.374939 def haversine(lat1, lon1, lat2, lon2): R = 3959.87433 # this is in miles. For Earth radius in kilometers use 6372.8 km dLat = radians(lat2 - lat1) dLon = radians(lon2 - lon1) lat1 = radians(lat1) lat2 = radians(lat2) a = sin(dLat/2)**2 + cos(lat1)*cos(lat2)*sin(dLon/2)**2 c = 2*asin(sqrt(a)) return R * c print(haversine(lat1, lon1, lat2, lon2))
回答8:
Here are two functions to calculate distance and bearing, which are based on the code in previous messages and https://gist.github.com/jeromer/2005586 (added tuple type for geographical points in lat, lon format for both functions for clarity). I tested both functions and they seem to work right.
#coding:UTF-8 from math import radians, cos, sin, asin, sqrt, atan2, degrees def haversine(pointA, pointB): if (type(pointA) != tuple) or (type(pointB) != tuple): raise TypeError("Only tuples are supported as arguments") lat1 = pointA[0] lon1 = pointA[1] lat2 = pointB[0] lon2 = pointB[1] # convert decimal degrees to radians lat1, lon1, lat2, lon2 = map(radians, [lat1, lon1, lat2, lon2]) # haversine formula dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2 c = 2 * asin(sqrt(a)) r = 6371 # Radius of earth in kilometers. Use 3956 for miles return c * r def initial_bearing(pointA, pointB): if (type(pointA) != tuple) or (type(pointB) != tuple): raise TypeError("Only tuples are supported as arguments") lat1 = radians(pointA[0]) lat2 = radians(pointB[0]) diffLong = radians(pointB[1] - pointA[1]) x = sin(diffLong) * cos(lat2) y = cos(lat1) * sin(lat2) - (sin(lat1) * cos(lat2) * cos(diffLong)) initial_bearing = atan2(x, y) # Now we have the initial bearing but math.atan2 return values # from -180° to + 180° which is not what we want for a compass bearing # The solution is to normalize the initial bearing as shown below initial_bearing = degrees(initial_bearing) compass_bearing = (initial_bearing + 360) % 360 return compass_bearing pA = (46.2038,6.1530) pB = (46.449, 30.690) print haversine(pA, pB) print initial_bearing(pA, pB)