I need an equation for equal movement along an ellipse

匿名 (未验证) 提交于 2019-12-03 01:18:02

问题:

i am programing something like planets moving around the Sun, and to move planets i am using a function

CGPointMake(object.center.x + 1, sqrt(75*75*150*150 - 75*75*(object.center.x - 300)*(object.center.x - 300))/150 + 150) 

using eliptic equation where a = 150, b = 75, p = 300, q = 150, but when object closes to x = around 450 its speed rises, i guess that is because of pitagora because the path its passes is c = sqrt((x-x0)^2*(y-y0)^2)

i notice my c is always around 0.5, but when it gets on the end of x domain it rises up to 0.8 so i need either a programatic or mathematical solution to make object move at same speed around an eliptic curve

Thank you!

回答1:

If you want the real thing

then the planets closer to the primary focus point (center of mass of stellar system ... very close to star) are moving faster so use Kepler's equation here: C++ implementation of mine. Do not forget to check out all the sub-links in that answer you can find there everything you need.

If you want constant speed instead

Then use parametric ellipse equation

x(a)=x0+rx*cos(a) y(a)=y0+ry*sin(a) 

where a is angle (x0,y0) is the ellipse center and (rx,ry) are the ellipse semi axises (radii).

if a is incremented with constant speed then the area increase is constant so the a is the mean circular angle not the visual on ellipse !!! For more info look here:

[edit1] as **MartinR pointed out the speed is not constant**

so here is approximation with his formula for speed. Ellipse is axis aligned defined by x0,y0,rx,ry (rx>=ry) the perimeter aproximation l:

h=(rx-ry)/(rx+ry); h*=3.0*h; l=M_PI*(rx+ry)*(1.0+(h/(10.0+sqrt(4.0-h)))); 

if you want to have n chunks of equal sized steps along the perimeter then

l/=n; 

initial computations:

double x0,y0,rx,ry,n,l,h; x0=Form1->ClientWidth>>1;  // center is centered on form y0=Form1->ClientHeight>>1; rx=200; // semiaxises rx>=ry !!! ry=75; n=40.0; // number of chunks per ellipse (1/speed) //l=2.0*M_PI*sqrt(0.5*((rx*rx)+(ry*ry)));  // not accurate enough h=(rx-ry)/(rx+ry); h*=3.0*h; l=M_PI*(rx+ry)*(1.0+(h/(10.0+sqrt(4.0-h)))); // this is more precise l/=n; // single step size in units,pixels,or whatever 

first the slow bruteforce attack (black):

int i; double a,da,x,y,xx,yy,ll; a=0.0; x=x0+rx*cos(a); y=y0+ry*sin(a); for (i=n;i>0;i--)     {     xx=x; yy=y;     for (da=a;;)         {         a+=0.001;         x=x0+rx*cos(a);         y=y0+ry*sin(a);         ll=sqrt(((xx-x)*(xx-x))+((yy-y)*(yy-y)));         if (ll>=l) break;         } da=a-da;     scr->MoveTo(5.0+50.0*a,5.0);     scr->LineTo(5.0+50.0*a,5.0+300.0*da);      scr->MoveTo(x0,y0);     scr->LineTo(xx,yy);     scr->LineTo(x ,y );     ll=sqrt(((xx-x)*(xx-x))+((yy-y)*(yy-y)));     scr->TextOutA(0.5*(x+xx)+20.0*cos(a),0.5*(y+yy)+20.0*sin(a),floor(ll));     } 

Now the approximation (Blue):

a=0.0; da=0; x=x0+rx*cos(a); y=y0+ry*sin(a); for (i=n;i>0;i--)     {     scr->MoveTo(5.0+50.0*a,5.0+300.0*da);     xx=rx*sin(a);     yy=ry*cos(a);     da=l/sqrt((xx*xx)+(yy*yy)); a+=da;     scr->LineTo(5.0+50.0*a,5.0+300.0*da);      xx=x; yy=y;     x=x0+rx*cos(a);     y=y0+ry*sin(a);      scr->MoveTo(x0,y0);     scr->LineTo(xx,yy);     scr->LineTo(x ,y );     ll=sqrt(((xx-x)*(xx-x))+((yy-y)*(yy-y)));     scr->TextOutA(0.5*(x+xx)+40.0*cos(a),0.5*(y+yy)+40.0*sin(a),floor(ll));     } 

This is clean ellipse step (no debug draws)

a=???; // some initial angle // point on ellipse  x=x0+rx*cos(a); y=y0+ry*sin(a); // next angle by almost constant speed xx=rx*sin(a); yy=ry*cos(a); da=l/sqrt((xx*xx)+(yy*yy)); a+=da; // next point on ellipse ... x=x0+rx*cos(a); y=y0+ry*sin(a); 

Here the output of comparison bruteforce and approximation:

[edit2] little precision boost

 a,da=???; // some initial angle and step (last)  x=x0+rx*cos(a);  y=y0+ry*sin(a);  // next angle by almost constant speed  xx=rx*sin(a+0.5*da); // use half step angle for aproximation ....  yy=ry*cos(a+0.5*da);  da=l/sqrt((xx*xx)+(yy*yy)); a+=da;  // next point on ellipse ...  x=x0+rx*cos(a);  y=y0+ry*sin(a); 

the half step angle in approximation lead to much closer result to bruteforce attack



回答2:

Hmm...

You could fake something like this very easily with SpriteKit. N.B. your entire app doesn't have to use SpriteKit. You can fairly easily put an SKView into a non-SpriteKit app.

Anyway...

Create your planet...

SKSpritNode *planet = [SKSpritNode spriteNodeWithImageNamed:@"mars"]; [solarSystemView addChild:planet]; 

Create your elliptical path...

UIBezierPath *ellipse = [UIBezierPath bezierPathWithOvalInRect:/*your rect*/]; //or create it any other way. 

Create an action...

SKAction *singleOrbit = [SKAction followPath:ellipse.CGPath speed:10]; SKAction *orbit = [SKAction repeatActionForever:singleOrbit]; 

Run the action...

[planet runAction:orbit]; 


标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!