数据比赛常用预测模型:LGB、XGB与ANN

匿名 (未验证) 提交于 2019-12-03 00:30:01

现在的比赛,想要拿到一个好的名次,就一定要进行模型融合,这里总结一下三种基础的模型:
- lightgbm:由于现在的比赛数据越来越大,想要获得一个比较高的预测精度,同时又要减少内存占用以及提升训练速度,lightgbm是一个非常不错的选择,其可达到与xgboost相似的预测效果。
- xgboost:在lightgbm出来之前,是打比赛的不二之选,现在由于需要做模型融合以提高预测精度,所以也需要使用到xgboost。
- ANN:得益于现在的计算机技术的高度发展,以及GPU性能的提高,还有Keras,tensorflow,pytorch等多重工具的使用,人工神经网络也可以作为最后模型融合的子模型之一,可以有效地提升最终的预测结果。

下面附上使用三个函数的Python代码,可以直接运行。(参考:https://blog.csdn.net/meyh0x5vdtk48p2/article/details/78816334


LGB

def LGB_predict(train_x,train_y,test_x,res,index):     print("LGB test")     clf = lgb.LGBMClassifier(         boosting_type='gbdt', num_leaves=31, reg_alpha=0.0, reg_lambda=1,         max_depth=-1, n_estimators=5000, objective='binary',         subsample=0.7, colsample_bytree=0.7, subsample_freq=1,         learning_rate=0.05, min_child_weight=50, random_state=2018, n_jobs=-1     )     clf.fit(train_x, train_y, eval_set=[(train_x, train_y)], eval_metric='auc',early_stopping_rounds=100)     res['score'+str(index)] = clf.predict_proba(test_x)[:,1]     res['score'+str(index)] = res['score'+str(index)].apply(lambda x: float('%.6f' % x))     print(str(index)+' predict finish!')     gc.collect()     res=res.reset_index(drop=True)     return res['score'+str(index)]

XGB

def XGB_predict(train_x,train_y,val_X,val_Y,test_x,res):     print("XGB test")     # create dataset for lightgbm      xgb_val = xgb.DMatrix(val_X, label=val_Y)     xgb_train = xgb.DMatrix(X_train, label=y_train)     xgb_test = xgb.DMatrix(test_x)     # specify your configurations as a dict     params = {               'booster': 'gbtree',               # 'objective': 'multi:softmax', # 多分类的问题、               # 'objective': 'multi:softprob', # 多分类概率               'objective': 'binary:logistic',               'eval_metric': 'auc',               # 'num_class': 9, # 类别数,与 multisoftmax 并用               'gamma': 0.1, # 用于控制是否后剪枝的参数,越大越保守,一般0.1、0.2这样子。               'max_depth': 8, # 构建树的深度,越大越容易过拟合               'alpha': 0, # L1正则化系数               'lambda': 10, # 控制模型复杂度的权重值的L2正则化项参数,参数越大,模型越不容易过拟合。               'subsample': 0.7, # 随机采样训练样本               'colsample_bytree': 0.5, # 生成树时进行的列采样               'min_child_weight': 3,               # 这个参数默认是 1,是每个叶子里面 h 的和至少是多少,对正负样本不均衡时的 0-1 分类而言               # ,假设 h 在 0.01 附近,min_child_weight 为 1 意味着叶子节点中最少需要包含 100 个样本。               # 这个参数非常影响结果,控制叶子节点中二阶导的和的最小值,该参数值越小,越容易 overfitting。               'silent': 0, # 设置成1则没有运行信息输出,最好是设置为0.               'eta': 0.03, # 如同学习率               'seed': 1000,               'nthread': -1, # cpu 线程数               'missing': 1,               'scale_pos_weight': (np.sum(y==0)/np.sum(y==1)) # 用来处理正负样本不均衡的问题,通常取:sum(negative cases) / sum(positive cases)               # 'eval_metric': 'auc'               }      plst = list(params.items())     num_rounds = 5000 # 迭代次数     watchlist = [(xgb_train, 'train'), (xgb_val, 'val')]     # 交叉验证     # result = xgb.cv(plst, xgb_train, num_boost_round=200, nfold=4, early_stopping_rounds=200, verbose_eval=True, folds=StratifiedKFold(n_splits=4).split(X, y))     # 训练模型并保存     # early_stopping_rounds 当设置的迭代次数较大时,early_stopping_rounds 可在一定的迭代次数内准确率没有提升就停止训练     model = xgb.train(plst, xgb_train, num_rounds, watchlist, early_stopping_rounds=200)     res['score'] = model.predict(xgb_test)     res['score'] = res['score'].apply(lambda x: float('%.6f' % x))     return res

ANN

imp = Imputer(missing_values='NaN', strategy='mean', axis=0) X_train = imp.fit_transform(X_train) sc = StandardScaler(with_mean=False) sc.fit(X_train) X_train = sc.transform(X_train) val_X = sc.transform(val_X) X_test = sc.transform(X_test)  ann_scale = 1  from keras.layers import Embedding  model = Sequential()  model.add(Embedding(X_train.shape[1] + 1,                     EMBEDDING_DIM,                     input_length=MAX_SEQUENCE_LENGTH)) #model.add(Dense(int(256 / ann_scale), input_shape=(X_train.shape[1],))) model.add(Dense(int(256 / ann_scale))) model.add(Activation('tanh')) model.add(Dropout(0.3)) model.add(Dense(int(512 / ann_scale))) model.add(Activation('relu')) model.add(Dropout(0.3)) model.add(Dense(int(512 / ann_scale))) model.add(Activation('tanh')) model.add(Dropout(0.3)) model.add(Dense(int(256 / ann_scale))) model.add(Activation('linear')) model.add(Dense(1))  model.add(Activation('sigmoid')) # For a multi-class classification problem model.summary()  class_weight1 = class_weight.compute_class_weight('balanced',                                                  np.unique(y),                                                  y)  #-----------------------------------------------------------------------------------------------------------------------------------------------------   # AUC for a binary classifier   def auc(y_true, y_pred):       ptas = tf.stack([binary_PTA(y_true,y_pred,k) for k in np.linspace(0, 1, 1000)],axis=0)       pfas = tf.stack([binary_PFA(y_true,y_pred,k) for k in np.linspace(0, 1, 1000)],axis=0)       pfas = tf.concat([tf.ones((1,)) ,pfas],axis=0)       binSizes = -(pfas[1:]-pfas[:-1])       s = ptas*binSizes       return K.sum(s, axis=0)    # PFA, prob false alert for binary classifier   def binary_PFA(y_true, y_pred, threshold=K.variable(value=0.5)):       y_pred = K.cast(y_pred >= threshold, 'float32')       # N = total number of negative labels       N = K.sum(1 - y_true)       # FP = total number of false alerts, alerts from the negative class labels       FP = K.sum(y_pred - y_pred * y_true)       return FP/N    # P_TA prob true alerts for binary classifier   def binary_PTA(y_true, y_pred, threshold=K.variable(value=0.5)):       y_pred = K.cast(y_pred >= threshold, 'float32')       # P = total number of positive labels       P = K.sum(y_true)       # TP = total number of correct alerts, alerts from the positive class labels       TP = K.sum(y_pred * y_true)       return TP/P   #-----------------------------------------------------------------------------------------------------------------------------------------------------    model.compile(loss='binary_crossentropy',               optimizer='rmsprop', #              metrics=['accuracy'],               metrics=[auc]) epochs = 100 model.fit(X_train, y, epochs=epochs, batch_size=2000,            validation_data=(val_X, val_y), shuffle=True,           class_weight = class_weight1)
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!