K-MEANS算法及sklearn实现

匿名 (未验证) 提交于 2019-12-03 00:13:02

K-MEANS算法

聚类概念:

1.无监督问题:我们手里没有标签

2.聚类:相似的东西分到一组

3.难点:如何评估,如何调参

4.要得到簇的个数,需要指定K值

5.质心:均值,即向量各维取平均即可

6.距离的度量:常用欧几里得距离和余弦相似度

7.优化目标:min$$ min \sum_{i=0}^k \sum_{C_j=0} dist(c_i,x)^2$$

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!