DeepStream开发日志

匿名 (未验证) 提交于 2019-12-03 00:08:02

DeepStream主页:https://developer.nvidia.com/deepstream-sdk

DeepStream Development Guide:https://docs.nvidia.com/metropolis/deepstream/4.0/dev-guide/

DeepStream SDK API:https://docs.nvidia.com/metropolis/deepstream/4.0/dev-guide/DeepStream_Development_Guide/baggage/index.html

环境搭建:

1)要求

2)执行nvidia-smi查询Nvidia驱动版本

Driver Version: 418.87.00

执行cat /usr/local/cuda/version.txt查询CUDA版本

CUDA Version 10.1.243

执行cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2查询cudnn版本

7.6.3

执行cat /proc/version查询ubuntu系统版本

18.04.1

Gstreamer安装:

apt-get install libgstreamer1.0-0 gstreamer1.0-plugins-base gstreamer1.0-plugins-good gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly gstreamer1.0-libav gstreamer1.0-doc gstreamer1.0-tools gstreamer1.0-x gstreamer1.0-alsa gstreamer1.0-gl gstreamer1.0-gtk3 gstreamer1.0-qt5 gstreamer1.0-pulseaudio

验证Gstreamer:dpkg -l | grep gstreamer

 

 TensorRT安装:参考https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html#installing-tar

下载:https://developer.nvidia.com/nvidia-tensorrt-5x-download,需要先登录NVIDIA账号

tar xzvf TensorRT-5.1.5.0.Ubuntu-18.04.2.x86_64-gnu.cuda-10.1.cudnn7.5.tar.gz

sudo vim ~/.bashrc,添加:

 

 source ~/.bashrc

cd TensorRT-5.1.5.0/python/

sudo -H pip3 install tensorrt-5.1.5.0-cp36-none-linux_x86_64.whl

cd ../uff   (计划将TensorRT与TensorFlow一起使用时,安装uff才是必要的)

sudo -H pip3 install uff-0.6.3-py2.py3-none-any.whl

which convert-to-uff

cd ../graphsurgeon

sudo -H pip3 install graphsurgeon-0.4.1-py2.py3-none-any.whl

验证TensorRT

cd TensorRT-5.1.5.0/samples/sampleMNIST/

make

cd ../../bin

./sample_mnist,如下所示,则安装成功

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!