bzoj3188 [Coci 2011]Upit(分块)

匿名 (未验证) 提交于 2019-12-03 00:04:02

Description

你需要维护一个序列,支持以下4种操作。一,将区间(u,v)的数覆盖为C;二,
将区间(u,v)的数依次加上一个以C为首项、C为公差的等差数列;三,将数C插入
第i个位置;四,查询区间(u,v)的数的和。序列最初有n个数,一共会有Q次操

Sample Input

5 5
1 2 3 4 5
1 5 5 0
4 4 5
4 5 5
2 1 5 1
4 1 5

Sample Output

4
0
25

HINT


我非常喜欢分块,所以我用分块过了这题

支持插入,区间加,修改的分块,用vector数组维护打打标记就行了

如果某块过大,暴力拆成两块就好辣(数据挺水好像用不上)

代码中块和数列的编号均从0开始

#include<iostream> #include<cstdio> #include<vector> #include<cmath> #include<algorithm> #define ri register int using namespace std; typedef long long ll; ll read(){     char c=getchar(); ll x=0; bool f=1;     while(c<'0'||c>'9') f=f&&(c!='-'),c=getchar();     while('0'<=c&&c<='9') x=x*10+c-48,c=getchar();     return f?x:-x; } #define N 60005 int n,Q,idm,B,sm[N]; ll s[N],w[N],d[N],k[N]; bool a[N],b[N]; vector <int> h; //从左到右块的编号 vector <ll> g[N]; inline ll G(int x){return g[x].size();} inline int id(int x){return lower_bound(sm+1,sm+idm+1,x)-sm-1;}//x属于哪个块 void down(int x){     if(a[x]) s[x]=G(x)*w[x],g[x].assign(G(x),w[x]),a[x]=w[x]=0;     if(b[x]){         ll q=d[x],q2=k[x],t=0; b[x]=k[x]=d[x]=s[x]=0;         for(ri i=0;i<G(x);++i) t+=q,g[x][i]+=t+q2,s[x]+=g[x][i];     } } void cover(int x,int y,ll v){     ri ix=id(x),iy=id(y),L=h[ix],R=h[iy],l=x-sm[ix]-1,r=y-sm[iy]-1;     if(L==R){         down(L);         for(ri i=l;i<=r;++i) s[L]+=(v-g[L][i]),g[L][i]=v;         return ;     }down(L),down(R);     for(ri i=l;i<G(L);++i) s[L]+=(v-g[L][i]),g[L][i]=v;     for(ri j=ix+1,i;j<iy;++j) i=h[j],s[i]=v*G(i),b[i]=k[i]=d[i]=0,w[i]=v,a[i]=1;     for(ri i=0;i<=r;++i) s[R]+=(v-g[R][i]),g[R][i]=v; } void add(int x,int y,ll v){     ri ix=id(x),iy=id(y),L=h[ix],R=h[iy],l=x-sm[ix]-1,r=y-sm[iy]-1; ll q=0;     if(L==R){         down(L);         for(ri i=l;i<=r;++i) q+=v,s[L]+=q,g[L][i]+=q;         return ;     }down(L),down(R);     for(ri i=l;i<G(L);++i) q+=v,s[L]+=q,g[L][i]+=q;     for(ri j=ix+1,i;j<iy;++j){         i=h[j];         if(a[i]){             s[i]=G(i)*w[i];             if(b[i]) s[i]+=(d[i]+d[i]*G(i))*G(i)/2+k[i]*G(i);         }         s[i]+=(v+v*G(i))*G(i)/2+q*G(i);          b[i]=1; d[i]+=v; k[i]+=q; q+=v*G(i);     }     for(ri i=0;i<=r;++i) q+=v,s[R]+=q,g[R][i]+=q; } void split(int x){     ri ix=id(x),L=h[ix];     h.insert(h.begin()+ix+1,idm);     for(ri i=B;i<G(L);++i)         g[idm].push_back(g[L][i]),s[idm]+=g[L][i],s[L]-=g[L][i];     g[L].erase(g[L].begin()+B,g[L].end()); idm++; } void ins(int x,ll v){     ri ix=id(x),L=h[ix],l=x-sm[ix]-1;     down(L); g[L].insert(g[L].begin()+l,v); s[L]+=v;     if(G(L)>B*2) split(x);//暴力拆块     for(ri i=0;i<idm;++i) sm[i+1]=sm[i]+G(h[i]); } ll ask(int x,int y){     ri ix=id(x),iy=id(y),L=h[ix],R=h[iy],l=x-sm[ix]-1,r=y-sm[iy]-1; ll re=0;     if(L==R){         down(L);         for(ri i=l;i<=r;++i) re+=g[L][i];         return re;     }down(L),down(R);     for(ri i=l;i<G(L);++i) re+=g[L][i];     for(ri j=ix+1;j<iy;++j) re+=s[h[j]];     for(ri i=r;i>=0;--i) re+=g[R][i];     return re; } int main(){     n=read(),Q=read(); ll q,x,y; sm[0]=-1; B=sqrt(n);     for(ri i=0;i<n;++i) q=read(),g[i/B].push_back(q),s[i/B]+=q;     while(idm*B<=n) sm[idm+1]=sm[idm]+G(idm),h.push_back(idm++);//sm[i]:第$i-1$块的右端点     while(Q--){         q=read(),x=read(),y=read();         if(q==1) cover(x-1,y-1,read());         if(q==2) add(x-1,y-1,read());         if(q==3) ins(x-1,y);         if(q==4) printf("%lld\n",ask(x-1,y-1));     }return 0; }

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!