《DSP using MATLAB》Problem 8.29

匿名 (未验证) 提交于 2019-12-02 23:55:01

        来汉有一月,往日的高温由于最近几个台风沿海登陆影响,今天终于下雨了,凉爽了几个小时。

        接着做题。

%% ------------------------------------------------------------------------ %%            Output Info about this m-file fprintf('\n***********************************************************\n'); fprintf('        <DSP using MATLAB> Problem 8.29 \n\n');  banner(); %% ------------------------------------------------------------------------  Fp = 1500;                    % analog passband freq in Hz Fs = 2000;                    % analog stopband freq in Hz fs = 8000;                    % sampling rate in Hz  % ------------------------------- %       ω = ΩT = 2πF/fs % Digital Filter Specifications: % ------------------------------- wp = 2*pi*Fp/fs;                 % digital passband freq in rad/sec %wp = Fp; ws = 2*pi*Fs/fs;                 % digital stopband freq in rad/sec %ws = Fs; Rp = 0.25;                        % passband ripple in dB As = 80;                         % stopband attenuation in dB  Ripple = 10 ^ (-Rp/20)           % passband ripple in absolute Attn = 10 ^ (-As/20)             % stopband attenuation in absolute  % Analog prototype specifications: Inverse Mapping for frequencies T = 1/fs;                       % set T = 1 OmegaP = wp/T;               % prototype passband freq OmegaS = ws/T;               % prototype stopband freq  % Analog Chebyshev-1 Prototype Filter Calculation: [cs, ds] = afd_chb2(OmegaP, OmegaS, Rp, As);  % Calculation of second-order sections: fprintf('\n***** Cascade-form in s-plane: START *****\n'); [CS, BS, AS] = sdir2cas(cs, ds) fprintf('\n***** Cascade-form in s-plane: END *****\n');  % Calculation of Frequency Response: [db_s, mag_s, pha_s, ww_s] = freqs_m(cs, ds, 2*pi/T);  % Calculation of Impulse Response: [ha, x, t] = impulse(cs, ds);  % Match-z Transformation: %[b, a] = imp_invr(cs, ds, T)        % digital Num and Deno coefficients of H(z) [b, a] = mzt(cs, ds, T)            % digital Num and Deno coefficients of H(z) [C, B, A] = dir2par(b, a)  % Calculation of Frequency Response: [db, mag, pha, grd, ww] = freqz_m(b, a);   %% ----------------------------------------------------------------- %%                             Plot %% -----------------------------------------------------------------   figure('NumberTitle', 'off', 'Name', 'Problem 8.29 Analog Chebyshev-2 lowpass') set(gcf,'Color','white');  M = 1.2;                          % Omega max  subplot(2,2,1); plot(ww_s/(pi*1000), mag_s);  grid on; axis([-16, 16, 0, 1.1]); xlabel(' Analog frequency in k\pi units'); ylabel('|H|'); title('Magnitude in Absolute'); set(gca, 'XTickMode', 'manual', 'XTick', [-2000, -1500, 0, 1500, 2000, 8000]*0.002); set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.0001, 0.5, 0.9716, 1]);  subplot(2,2,2); plot(ww_s/(pi*1000), db_s);  grid on; %axis([0, M, -50, 10]); xlabel('Analog frequency in k\pi units'); ylabel('Decibels'); title('Magnitude in dB '); set(gca, 'XTickMode', 'manual', 'XTick', [-2000, -1500, 0, 1500, 2000, 8000]*0.002); set(gca, 'YTickMode', 'manual', 'YTick', [ -80, -1, 0]); set(gca,'YTickLabelMode','manual','YTickLabel',['80';' 1';' 0']);  subplot(2,2,3); plot(ww_s/(pi*1000), pha_s/pi);  grid on; axis([-16, 16, -1.2, 1.2]); xlabel('Analog frequency in k\pi nuits'); ylabel('radians'); title('Phase Response'); set(gca, 'XTickMode', 'manual', 'XTick', [-2000, -1500, 0, 1500, 2000, 8000]*0.002); set(gca, 'YTickMode', 'manual', 'YTick', [-1:0.5:1]);  subplot(2,2,4); plot(t, ha); grid on; %axis([0, 30, -0.05, 0.25]);  xlabel('time in seconds'); ylabel('ha(t)'); title('Impulse Response');   figure('NumberTitle', 'off', 'Name', 'Problem 8.29 Digital Chebyshev-2 lowpass') set(gcf,'Color','white');  M = 2;                          % Omega max  %%  Note  %% %%  Magnitude of H(z) * T %%  Note  %%  subplot(2,2,1); plot(ww/pi, mag/max(mag));  grid on; axis([0, M, 0, 1.1]); xlabel(' frequency in \pi units'); ylabel('|H|'); title('Magnitude Response'); set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.375, 0.5, 1.0, M]); set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.0001, 0.5, 0.9716, 1, 5, 10, 550]);  subplot(2,2,2); plot(ww/pi, pha/pi); axis([0, M, -1.1, 1.1]); grid on; xlabel('frequency in \pi nuits'); ylabel('radians in \pi units'); title('Phase Response'); set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.375, 0.5, 1.0, M]); set(gca, 'YTickMode', 'manual', 'YTick', [-1:1:1]);  subplot(2,2,3); plot(ww/pi, db); axis([0, M, -120, 10]); grid on; xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude in dB '); set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.375, 0.5, 1.0, M]); set(gca, 'YTickMode', 'manual', 'YTick', [-80, -1, 0]); set(gca,'YTickLabelMode','manual','YTickLabel',['80';' 1';' 0']);  subplot(2,2,4); plot(ww/pi, grd); grid on; %axis([0, M, 0, 35]); xlabel('frequency in \pi units'); ylabel('Samples'); title('Group Delay'); set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.375, 0.5, 1.0, M]); %set(gca, 'YTickMode', 'manual', 'YTick', [0:5:35]);  figure('NumberTitle', 'off', 'Name', 'Problem 8.29 Pole-Zero Plot') set(gcf,'Color','white');  zplane(b,a);  title(sprintf('Pole-Zero Plot')); %pzplotz(b,a);     % Calculation of Impulse Response: %[hs, xs, ts] = impulse(c, d); figure('NumberTitle', 'off', 'Name', 'Problem 8.29 Imp & Freq Response') set(gcf,'Color','white');  t = [0 : 0.000125 : 0.01]; subplot(2,1,1); impulse(cs,ds,t); grid on;   % Impulse response of the analog filter axis([0, 0.01, -2000, 3000]);hold on  n = [0:1:0.01/T]; hn = filter(b,a,impseq(0,0,0.01/T));             % Impulse response of the digital filter stem(n*T,hn); xlabel('time in sec'); title (sprintf('Impulse Responses, T=%f',T)); hold off    %n = [0:1:29]; %hz = impz(b, a, n);  % Calculation of Frequency Response: [dbs, mags, phas, wws] = freqs_m(cs, ds, 2*pi/T);             % Analog frequency   s-domain    [dbz, magz, phaz, grdz, wwz] = freqz_m(b, a);                 % Digital  z-domain    %% ----------------------------------------------------------------- %%                             Plot %% -----------------------------------------------------------------    M = 1/T;                          % Omega max  subplot(2,1,2); plot(wws/(2*pi),mags*Fs,'b', wwz/(2*pi)*Fs,magz,'r'); grid on;  xlabel('frequency in Hz'); title('Magnitude Responses'); ylabel('Magnitude');   text(1.4,.5,'Analog filter'); text(1.5,1.5,'Digital filter');

  运行结果:

        绝对指标

        Chebyshev-2型模拟低通,系统函数串联形式系数

        用match-z算法转换成数字低通,系统函数直接形式的系数

         直接形式转换成并联形式,系数

        Chebyshev-2型模拟低通,幅度谱、相位谱和脉冲响应

        数字低通幅度谱、相位谱和群延迟响应

        数字低通的零极点图

        给定衰减值对应的精确频率值怎么求,暂时还不会,这里不计算了。

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!