#导入工具包
from imutils import *
Erosion腐蚀
其原理是在原图的小区域内取局部最小值,其函数是cv2.erode()。这个核也叫结构元素,因为形态学操作其实也是应用卷积来实现的,结构元素可以是矩形/椭圆/十字形,可以用cv2.getStructuringElement()来生成不同形状的结构元素,比如:
# 矩形 kernel1 = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5)) print(kernel1)
[[1 1 1 1 1] [1 1 1 1 1] [1 1 1 1 1] [1 1 1 1 1] [1 1 1 1 1]]
# 椭圆 kernel2 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5,5)) print(kernel2)
[[0 0 1 0 0] [1 1 1 1 1] [1 1 1 1 1] [1 1 1 1 1] [0 0 1 0 0]]
# 十字形 kernel3 = cv2.getStructuringElement(cv2.MORPH_CROSS, (5,5)) print(kernel3)
image = imread('image.jpg') show(image)
1 erosion = cv2.erode(image, kernel1) 2 show(erosion)
1 for i in range(3): 2 erosion = cv2.erode(image, kernel1, iterations=i+1) 3 show(erosion)
Dilation膨胀
膨胀与腐蚀相反,取的是局部最大值。cv2.dilate()
1 dilation = cv2.dilate(image, kernel) 2 show(dilation)
1 for i in range(3): 2 dilation = cv2.dilate(image, kernel1, iterations=i+1) 3 show(dilation)
Opening开运算
先腐蚀后膨胀叫开运算,其作用是消除小白点。这类形态学操作用cv2.morphologyEx()函数实现
#读入图片
1 image2 = imread('image2.jpg') 2 show(image2)
1 # 去除白点 2 opening = cv2.morphologyEx(image2, cv2.MORPH_OPEN, kernel1) 3 show(opening)
闭运算则相反:先膨胀后腐蚀。其作用是消除小黑点。
1 # 去除黑点 2 closing = cv2.morphologyEx(image2, cv2.MORPH_CLOSE, kernel1) 3 show(closing)
# 先开运算再闭运算
1 opening = cv2.morphologyEx(image2, cv2.MORPH_OPEN, kernel1) 2 closing = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel1) 3 show(closing)
膨胀图减去腐蚀图,dilation - erosion,得到物体的轮廓
gradient = cv2.morphologyEx(image, cv2.MORPH_GRADIENT, kernel1) show(gradient)
原图减去开运算后的图:src - opening
1 tophat = cv2.morphologyEx(image2, cv2.MORPH_TOPHAT, kernel1) 2 show(tophat)
Black Hat黑帽
闭运算后的图减去原图:closing - src
1 blackhat = cv2.morphologyEx(image2, cv2.MORPH_BLACKHAT, kernel1) 2 show(blackhat)
来源:博客园
作者:刘文华
链接:https://www.cnblogs.com/liuwenhua/p/11506398.html