How do I avoid implicit conversions on non-constructing functions?

限于喜欢 提交于 2019-11-26 13:56:28

问题


How do I avoid implicit casting on non-constructing functions?
I have a function that takes an integer as a parameter,
but that function will also take characters, bools, and longs.
I believe it does this by implicitly casting them.
How can I avoid this so that the function only accepts parameters of a matching type, and will refuse to compile otherwise?
There is a keyword "explicit" but it does not work on non-constructing functions. :\
what do I do?

The following program compiles, although I'd like it not to:

#include <cstdlib>

//the function signature requires an int
void function(int i);

int main(){

    int i{5};
    function(i); //<- this is acceptable

    char c{'a'};
    function(c); //<- I would NOT like this to compile

    return EXIT_SUCCESS;
}

void function(int i){return;}

*please be sure to point out any misuse of terminology and assumptions


回答1:


You can't directly, because a char automatically gets promoted to int.

You can resort to a trick though: create a function that takes a char as parameter and don't implement it. It will compile, but you'll get a linker error:

void function(int i) 
{
}
void function(char i);
//or, in C++11
void function(char i) = delete;

Calling the function with a char parameter will break the build.

See http://ideone.com/2SRdM

Terminology: non-construcing functions? Do you mean a function that is not a constructor?




回答2:


Define function template which matches all other types:

void function(int); // this will be selected for int only

template <class T>
void function(T) = delete; // C++11 

This is because non-template functions with direct matching are always considered first. Then the function template with direct match are considered - so never function<int> will be used. But for anything else, like char, function<char> will be used - and this gives your compilation errrors:

void function(int) {}

template <class T>
void function(T) = delete; // C++11 


int main() {
   function(1);
   function(char(1)); // line 12
} 

ERRORS:

prog.cpp: In function 'int main()':
prog.cpp:4:6: error: deleted function 'void function(T) [with T = char]'
prog.cpp:12:20: error: used here

This is C++03 way:

// because this ugly code will give you compilation error for all other types
class DeleteOverload
{
private:
    DeleteOverload(void*);
};


template <class T>
void function(T a, DeleteOverload = 0);

void function(int a)
{}



回答3:


Here's a general solution that causes an error at compile time if function is called with anything but an int

template <typename T>
struct is_int { static const bool value = false; };

template <>
struct is_int<int> { static const bool value = true; };


template <typename T>
void function(T i) {
  static_assert(is_int<T>::value, "argument is not int");
  return;
}

int main() {
  int i = 5;
  char c = 'a';

  function(i);
  //function(c);

  return 0;
}

It works by allowing any type for the argument to function but using is_int as a type-level predicate. The generic implementation of is_int has a false value but the explicit specialization for the int type has value true so that the static assert guarantees that the argument has exactly type int otherwise there is a compile error.




回答4:


Maybe you can use a struct to make the second function private:

#include <cstdlib>

struct NoCast {
    static void function(int i);
  private:
    static void function(char c);
};

int main(){

    int i(5);
    NoCast::function(i); //<- this is acceptable

    char c('a');
    NoCast::function(c); //<- Error

    return EXIT_SUCCESS;
}

void NoCast::function(int i){return;}

This won't compile:

prog.cpp: In function ‘int main()’:
prog.cpp:7: error: ‘static void NoCast::function(char)’ is private
prog.cpp:16: error: within this context



回答5:


Well, I was going to answer this with the code below, but even though it works with Visual C++, in the sense of producing the desired compilation error, MinGW g++ 4.7.1 accepts it, and invokes the rvalue reference constructor!

I think it must be a compiler bug, but I could be wrong, so – anyone?

Anyway, here's the code, which may turn out to be a standard-compliant solution (or, it may turn out that that's a thinko on my part!):

#include <iostream>
#include <utility>      // std::is_same, std::enable_if
using namespace std;

template< class Type >
struct Boxed
{
    Type value;

    template< class Arg >
    Boxed(
        Arg const& v,
        typename enable_if< is_same< Type, Arg >::value, Arg >::type* = 0
        )
        : value( v )
    {
        wcout << "Generic!" << endl;
    }

    Boxed( Type&& v ): value( move( v ) )
    {
        wcout << "Rvalue!" << endl;
    }
};

void function( Boxed< int > v ) {}

int main()
{
    int i = 5;
    function( i );  //<- this is acceptable

    char c = 'a';
    function( c );  //<- I would NOT like this to compile
}



回答6:


For C++14 (and I believe C++11), you can disable copy constructors by overloading rvalue-references as well:

Example: Say you have a base Binding<C> class, where C is either the base Constraint class, or an inherited class. Say you are storing Binding<C> by value in a vector, and you pass a reference to the binding and you wish to ensure that you do not cause an implicit copy.

You may do so by deleting func(Binding<C>&& x) (per PiotrNycz's example) for rvalue-reference specific cases.

Snippet:

template<typename T>
void overload_info(const T& x) {
  cout << "overload: " << "const " << name_trait<T>::name() << "&" << endl;
}

template<typename T>
void overload_info(T&& x) {
  cout << "overload: " << name_trait<T>::name() << "&&" << endl;
}

template<typename T>
void disable_implicit_copy(T&& x) = delete;

template<typename T>
void disable_implicit_copy(const T& x) {
  cout << "[valid] ";
  overload_info<T>(x);
}

...

int main() {
  Constraint c;
  LinearConstraint lc(1);

  Binding<Constraint> bc(&c, {});
  Binding<LinearConstraint> blc(&lc, {});

  CALL(overload_info<Binding<Constraint>>(bc));
  CALL(overload_info<Binding<LinearConstraint>>(blc));

  CALL(overload_info<Binding<Constraint>>(blc));

  CALL(disable_implicit_copy<Binding<Constraint>>(bc));
  // // Causes desired error
  // CALL(disable_implicit_copy<Binding<Constraint>>(blc));
}

Output:

>>> overload_info(bc)
overload: T&&

>>> overload_info<Binding<Constraint>>(bc)
overload: const Binding<Constraint>&

>>> overload_info<Binding<LinearConstraint>>(blc)
overload: const Binding<LinearConstraint>&

>>> overload_info<Binding<Constraint>>(blc)
implicit copy: Binding<LinearConstraint>  ->  Binding<Constraint>
overload: Binding<Constraint>&&

>>> disable_implicit_copy<Binding<Constraint>>(bc)
[valid] overload: const Binding<Constraint>&

Error (with clang-3.9 in bazel, when offending line is uncommented):

cpp_quick/prevent_implicit_conversion.cc:116:8: error: call to deleted function 'disable_implicit_copy'
  CALL(disable_implicit_copy<Binding<Constraint>>(blc));
       ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Full Source Code: prevent_implicit_conversion.cc




回答7:


I first tried PiotrNycz's approach (for C++03, which I'm forced to use for a project), then I tried to find a more general approach and came up with this ForcedType<T> template class.

template <typename T>
struct ForcedType {
    ForcedType(T v): m_v(v) {}
    operator T&() { return m_v; }
    operator const T&() const { return m_v; }

private:
    template <typename T2>
    ForcedType(T2);

    T m_v;
};

template <typename T>
struct ForcedType<const T&> {
    ForcedType(const T& v): m_v(v) {}
    operator const T&() const { return m_v; }

private:
    template <typename T2>
    ForcedType(const T2&);

    const T& m_v;
};

template <typename T>
struct ForcedType<T&> {
    ForcedType(T& v): m_v(v) {}
    operator T&() { return m_v; }
    operator const T&() const { return m_v; }

private:
    template <typename T2>
    ForcedType(T2&);

    T& m_v;
};

If I'm not mistaken, those three specializations should cover all common use cases. I'm not sure if a specialization for rvalue-reference (on C++11 onwards) is actually needed or the by-value one suffices.

One would use it like this, in case of a function with 3 parameters whose 3rd parameter doesn't allow implicit conversions:

function(ParamType1 param1, ParamType2 param2, ForcedType<ParamType3> param3);


来源:https://stackoverflow.com/questions/12877546/how-do-i-avoid-implicit-conversions-on-non-constructing-functions

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!