# -*- coding: utf-8 -*- # Spyder (python 3.7)
import pandas as pd import jieba import jieba.analyse as anls if __name__ == '__main__': data = pd.read_excel(r'空气指数评论.xlsx') # content为excel的列名 opinion_content = data['content'].dropna().values all_word = '' for i in opinion_content: #形成整个字符串 all_word = all_word +','+ str(i) all_word = all_word.strip() #去掉字符串的空格 all_word_upper = all_word.upper() #大写 #加载词典 #jieba.load_userdict(r"D:\Python_workspace\aaaa.txt") #如果有不想被切分开的词,例如王者荣耀,和平精英等,可以进行参数设置:tune=True # jieba.analyse 是基于tf-idf算法的关键词抽取 segment=['王者荣耀','和平精英'] for ii in segment: jieba.suggest_freq(ii, tune=True) anls.set_stop_words("111.txt") #加载停用词文档,网上可以下载或者自己创建 tags = anls.extract_tags(all_word_upper, topK=None, withWeight=True) for x, w in tags: print('%s %s' % (x, w)) for v, n in tags: #权重n是小数,乘了十万成为整数,可以按需求设置不同值 out_words= v + '\t' + str(int(n * 100000)) #注意'a+'为追加写入,因此如果重新运行程序,则需要先删除上次生成的文件,结果保存在当前目录下,可以更改目录 with open('.\cut_words_content.txt','a+',encoding='utf-8')as f: f.write(out_words+'\n')
附加:另一种jieba分词写法:
sentence_seged = [seg for seg in jieba.cut(all_word) if len(seg) >= char_len] # all_word为整个要分词的字符串,该方式没有利用到权重,是单纯的分词 # 返回的是分词后的列表 # 分词长度最少大于char_len
参考jieba中文分词:https://github.com/fxsjy/jieba
##欢迎讨论