I have data frame where some of the values are missing
A 1
A NA
A NA
B NA
B 2
B NA
C NA
C NA
C NA
How can I fill in groups where I have data?
Alternative solution, though perhaps a bit flawed in how many assumptions it makes:
library(dplyr)
y %>%
group_by(V1) %>%
arrange(V2) %>%
mutate(V2 = V2[1])
# Source: local data frame [9 x 2]
# Groups: V1 [3]
# V1 V2
# (chr) (int)
# 1 A 1
# 2 A 1
# 3 A 1
# 4 B 2
# 5 B 2
# 6 B 2
# 7 C NA
# 8 C NA
# 9 C NA
You can also use fill
from tidyr
:
library(dplyr)
library(tidyr)
df1 %>%
group_by(ID) %>%
fill(v1) %>%
fill(v1, .direction = "up")
Result:
# A tibble: 9 x 2
# Groups: ID [3]
ID v1
<chr> <int>
1 A 1
2 A 1
3 A 1
4 B 2
5 B 2
6 B 2
7 C NA
8 C NA
9 C NA
Credits to @akrun for dput
We can use data.table
. Convert the 'data.frame' to 'data.table' (setDT(df1)
), grouped by 'ID', we assign (:=
) the column 'v1' as the first non-NA value.
library(data.table)
setDT(df1)[, v1:= v1[!is.na(v1)][1L] , by = ID]
df1
# ID v1
#1: A 1
#2: A 1
#3: A 1
#4: B 2
#5: B 2
#6: B 2
#7: C NA
#8: C NA
#9: C NA
Or using only base R
with(df1, ave(v1, ID, FUN = function(x)
replace(x, is.na(x), x[!is.na(x)][1L])))
#[1] 1 1 1 2 2 2 NA NA NA
data
df1 <- structure(list(ID = c("A", "A", "A", "B", "B", "B", "C", "C",
"C"), v1 = c(1L, NA, NA, NA, 2L, NA, NA, NA, NA)), .Names = c("ID",
"v1"), class = "data.frame", row.names = c(NA, -9L))
来源:https://stackoverflow.com/questions/36962324/filling-missing-value-in-group