jieba
“结巴”中文分词:做最好的 Python 中文分词组件
"Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module.
- Scroll down for English documentation.
特点
-
支持三种分词模式:
- 精确模式,试图将句子最精确地切开,适合文本分析;
- 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
- 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
-
支持繁体分词
-
支持自定义词典
-
MIT 授权协议
算法
- 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG)
- 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
- 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法
主要功能
- 分词
jieba.cut
方法接受三个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型jieba.cut_for_search
方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细- 待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8
jieba.cut
以及jieba.cut_for_search
返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用jieba.lcut
以及jieba.lcut_for_search
直接返回 listjieba.Tokenizer(dictionary=DEFAULT_DICT)
新建自定义分词器,可用于同时使用不同词典。jieba.dt
为默认分词器,所有全局分词相关函数都是该分词器的映射。
代码示例
# encoding=utf-8
import jieba
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print("Full Mode: " + "/ ".join(seg_list)) # 全模式
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print("Default Mode: " + "/ ".join(seg_list)) # 精确模式
seg_list = jieba.cut("他来到了网易杭研大厦") # 默认是精确模式
print(", ".join(seg_list))
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
print(", ".join(seg_list))
输出:
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学 【精确模式】: 我/ 来到/ 北京/ 清华大学 【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了) 【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
- 添加自定义词典
载入词典
- 开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率
- 用法: jieba.load_userdict(file_name) # file_name 为文件类对象或自定义词典的路径
- 词典格式和
dict.txt
一样,一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。file_name
若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码。 - 词频省略时使用自动计算的能保证分出该词的词频。
例如:
创新办 3 i 云计算 5 凱特琳 nz 台中
-
更改分词器(默认为
jieba.dt
)的tmp_dir
和cache_file
属性,可分别指定缓存文件所在的文件夹及其文件名,用于受限的文件系统。 -
范例:
-
自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt
-
用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py
-
之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
-
加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
-
-
调整词典
-
使用
add_word(word, freq=None, tag=None)
和del_word(word)
可在程序中动态修改词典。 -
使用
suggest_freq(segment, tune=True)
可调节单个词语的词频,使其能(或不能)被分出来。 -
注意:自动计算的词频在使用 HMM 新词发现功能时可能无效。
代码示例:
>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
如果/放到/post/中将/出错/。
>>> jieba.suggest_freq(('中', '将'), True)
494
>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
如果/放到/post/中/将/出错/。
>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
「/台/中/」/正确/应该/不会/被/切开
>>> jieba.suggest_freq('台中', True)
69
>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
「/台中/」/正确/应该/不会/被/切开
停用词
import jieba
# jieba.load_userdict('userdict.txt')
# 创建停用词list
def stopwordslist(filepath):
stopwords = [line.strip() for line in open(filepath, 'r', encoding='utf-8').readlines()]
return stopwords
# 对句子进行分词
def seg_sentence(sentence):
sentence_seged = jieba.cut(sentence.strip())
stopwords = stopwordslist('./test/stopwords.txt') # 这里加载停用词的路径
outstr = ''
for word in sentence_seged:
if word not in stopwords:
if word != '\t':
outstr += word
outstr += " "
return outstr
inputs = open('./test/input.txt', 'r', encoding='utf-8')
outputs = open('./test/output.txt', 'w')
for line in inputs:
line_seg = seg_sentence(line) # 这里的返回值是字符串
outputs.write(line_seg + '\n')
outputs.close()
inputs.close()
关键词提取
import jieba.analyse
# 字符串前面加u表示使用unicode编码
content = u'中国特色社会主义是我们党领导的伟大事业,全面推进党的建设新的伟大工程,是这一伟大事业取得胜利的关键所在。党坚强有力,事业才能兴旺发达,国家才能繁荣稳定,人民才能幸福安康。党的十八大以来,我们党坚持党要管党、从严治党,凝心聚力、直击积弊、扶正祛邪,党的建设开创新局面,党风政风呈现新气象。习 近 平 总书记围绕从严管党治党提出一系列新的重要思想,为全面推进党的建设新的伟大工程进一步指明了方向。'
# 第一个参数:待提取关键词的文本
# 第二个参数:返回关键词的数量,重要性从高到低排序
# 第三个参数:是否同时返回每个关键词的权重
# 第四个参数:词性过滤,为空表示不过滤,若提供则仅返回符合词性要求的关键词
keywords = jieba.analyse.extract_tags(content, topK=20, withWeight=True, allowPOS=())
# 访问提取结果
for item in keywords:
# 分别为关键词和相应的权重
print (item[0], item[1])
# 同样是四个参数,但allowPOS默认为('ns', 'n', 'vn', 'v')
# 即仅提取地名、名词、动名词、动词
keywords = jieba.analyse.textrank(content, topK=20, withWeight=True, allowPOS=('ns', 'n', 'vn', 'v'))
# 访问提取结果
for item in keywords:
# 分别为关键词和相应的权重
print (item[0], item[1])
词性标注
jieba在进行中文分词的同时,还可以完成词性标注任务。根据分词结果中每个词的词性,可以初步实现命名实体识别,即将标注为nr的词视为人名,将标注为ns的词视为地名等。所有标点符号都会被标注为x,所以可以根据这个去除分词结果中的标点符号。
# 加载jieba.posseg并取个别名,方便调用
import jieba.posseg as pseg
words = pseg.cut("我爱北京天安门")
for word, flag in words:
# 格式化模版并传入参数
print('%s, %s' % (word, flag))
我, r
爱, v
北京, ns
天安门, ns
3.6计算 TF-IDF
TFIDF实际上是:TF * IDF
词频(term frequency,TF)指的是某一个给定的词语在该文件中出现的频率。
逆向文件频率(inverse document frequency,IDF)是一个词语普遍重要性的度量。某一特定词语的IDF,可以由总文件数目除以包含该词语之文件的数目。
这边的例子以上述的数学公式来计算。词频 (TF) 是一词语出现的次数除以该文件的总词语数。假如一篇文件的总词语数是100个,而词语“母牛”出现了3次,那么“母牛”一词在该文件中的词频就是3/100=0.03。一个计算文件频率 (IDF) 的方法是文件集里包含的文件总数除以测定有多少份文件出现过“母牛”一词。所以,如果“母牛”一词在1,000份文件出现过,而文件总数是10,000,000份的话,其逆向文件频率就是 lg10,000,000 / 1,000)=4。最后的TF-IDF的分数为0.03 * 4=0.12。
# coding:utf-8
import jieba
import jieba.posseg as pseg
import os
import sys
from sklearn import feature_extraction
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import CountVectorizer
if __name__ == "__main__":
corpus=["我 来到 北京 清华大学",#第一类文本切词后的结果,词之间以空格隔开
"他 来到 了 网易 杭研 大厦",#第二类文本的切词结果
"小明 硕士 毕业 与 中国 科学院",#第三类文本的切词结果
"我 爱 北京 天安门"]#第四类文本的切词结果
vectorizer=CountVectorizer()#该类会将文本中的词语转换为词频矩阵,矩阵元素a[i][j] 表示j词在i类文本下的词频
transformer=TfidfTransformer()#该类会统计每个词语的tf-idf权值
tfidf=transformer.fit_transform(vectorizer.fit_transform(corpus))#第一个fit_transform是计算tf-idf,第二个fit_transform是将文本转为词频矩阵
word=vectorizer.get_feature_names()#获取词袋模型中的所有词语
weight=tfidf.toarray()#将tf-idf矩阵抽取出来,元素a[i][j]表示j词在i类文本中的tf-idf权重
for i in range(len(weight)):#打印每类文本的tf-idf词语权重,第一个for遍历所有文本,第二个for便利某一类文本下的词语权重
print (u"-------这里输出第",i,u"类文本的词语tf-idf权重------")
for j in range(len(word)):
print (word[j],weight[i][j])
-
- "通过用户自定义词典来增强歧义纠错能力" --- https://github.com/fxsjy/jieba/issues/14